A004171 a(n) = 2^(2n+1).
2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832, 140737488355328, 562949953421312
Offset: 0
Examples
G.f. = 2 + 8*x + 32*x^2 + 128*x^3 + 512*x^4 + 2048*x^5 + 8192*x^6 + 32768*x^7 + ... From _Adi Dani_, May 15 2011: (Start) a(1) = 8 because all compositions of even natural numbers into 2 parts less than or equal to 3 are: for 0: (0, 0) for 2: (0, 2), (2, 0), (1, 1) for 4: (1, 3), (3, 1), (2, 2) for 6: (3, 3). a(2) = 32 because all compositions of even natural numbers into 3 parts less than or equal to 3 are: for 0: (0, 0, 0) for 2: (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1) , (1, 1, 0) for 4: (0, 1, 3), (0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1) for 6: (0, 3, 3), (3, 0, 3), (3, 3, 0), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2) for 8: (2, 3, 3), (3, 2, 3), (3, 3, 2). (End)
References
- Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
- Ling Gao, Graph assembly for spider and tadpole graphs, Master's Thesis, Cal. State Poly. Univ. (2023).
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Tanya Khovanova, Recursive Sequences.
- Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
- Index entries for linear recurrences with constant coefficients, signature (4).
- Index to divisibility sequences.
Crossrefs
Programs
-
GAP
List([0..30],n->2^(2*n+1)); # Muniru A Asiru, Mar 12 2019
-
Haskell
a004171 = (* 2) . a000302 a004171_list = iterate (* 4) 2 -- Reinhard Zumkeller, Jan 09 2013
-
Magma
[2^(2*n+1): n in [0..30]]; // Vincenzo Librandi, May 16 2011
-
Maple
seq(2^(2*n+1),n=0..24); # Nathaniel Johnston, Jun 25 2011
-
Mathematica
Table[2^(2 n + 1), {n, 0, 24}] 2^(2 Range[20] - 1) (* Eric W. Weisstein, Dec 01 2017 *) LinearRecurrence[{4}, {2}, 20] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[2/(1 - 4 x), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
PARI
a(n)=2<<(2*n) \\ Charles R Greathouse IV, Apr 07 2012
-
PARI
a(n) = 2^(2*n+1) \\ Michel Marcus, Aug 12 2014
-
SageMath
[2**(2*n+1) for n in range(0,25)] # Stefano Spezia, Jul 23 2025
-
Scala
((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).map(2 * ) // _Alonso del Arte, Sep 12 2019
Formula
a(n) = 2*4^n.
a(n) = 4*a(n-1).
1 = 1/2 + Sum_{n >= 1} 3/a(n) = 3/6 + 3/8 + 3/32 + 3/128 + 3/512 + 3/2048 + ...; with partial sums: 1/2, 31/32, 127/128, 511/512, 2047/2048, ... - Gary W. Adamson, Jun 16 2003
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 2*A000302(n).
G.f.: 2/(1-4*x). (End)
a(n) = A081294(n+1) = A028403(n+1) - A000079(n+1) for n >= 1. a(n-1) = A028403(n) - A000079(n). - Jaroslav Krizek, Jul 27 2009
E.g.f.: 2*exp(4*x). - Ilya Gutkovskiy, Nov 01 2016
a(n) = Sum_{k = 0..2*n} (-1)^(k+n)*binomial(4*n + 2, 2*k + 1); a(2*n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A013776(n). - Peter Bala, Nov 25 2016
Product_{n>=0} (1 - 1/a(n)) = A132020. - Amiram Eldar, May 08 2023
Comments