cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005581 a(n) = (n-1)*n*(n+4)/6.

Original entry on oeis.org

0, 0, 2, 7, 16, 30, 50, 77, 112, 156, 210, 275, 352, 442, 546, 665, 800, 952, 1122, 1311, 1520, 1750, 2002, 2277, 2576, 2900, 3250, 3627, 4032, 4466, 4930, 5425, 5952, 6512, 7106, 7735, 8400, 9102, 9842, 10621, 11440, 12300, 13202, 14147, 15136, 16170
Offset: 0

Views

Author

Keywords

Comments

A class of Boolean functions of n variables and rank 2.
Also, number of inscribable triangles within a (n+4)-gon sharing with them its vertices but not its sides. - Lekraj Beedassy, Nov 14 2003
a(n) = A111808(n,3) for n > 2. - Reinhard Zumkeller, Aug 17 2005
If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-3)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
The sequence starting with offset 2 = binomial transform of [2, 5, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson, Mar 20 2009
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n >= 4, a(n-4) is the number of (0,1) n X n matrices A <= P^(-1) + I + P having exactly two 1's in every row and column with perA=8. - Vladimir Shevelev, Apr 12 2010
Also arises as the number of triples of edges which can be chosen as the cut-points in the "three-opt" heuristic for a traveling salesman problem on (n+4) nodes. - James McDermott, Jul 10 2015
a(n) = risefac(n, 3)/3! - n is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 3 and dimension n. Here risefac is the rising factorial. - Wolfdieter Lang, Dec 10 2015
For n >= 2, a(n) is the number of characters in a word Q formed by concatenating all 'directed' ( left to right or vice versa), unrearranged subwords, from length 1 to (n-1), of a length (n-1) word q- allowing for the appearance of repeated subwords- and simply inserting an extra character for all subwords thus concatenated. - Christopher Hohl, May 30 2019

Examples

			In hexagon ABCDEF, the "interior" triangles are ACE and BDF, and a(6-4)=a(2)=2. - _Toby Gottfried_, Nov 12 2011
G.f. = 2*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 50*x^6 + 77*x^7 + 112*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Joseph D. Konhauser, Dan Velleman and Stan Wagon,, Which Way Did the Bicycle Go?, MAA, 1996, p. 177.
  • V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, Vol. 3 (1992), pp. 15-19. - Vladimir Shevelev, Apr 12 2010
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=3) (First published: San Francisco: Holden-Day, Inc., 1964).

Crossrefs

Programs

Formula

G.f.: (x^2)*(2-x)/(1-x)^4.
a(n) = binomial(n+1, n-2) + binomial(n, n-2).
a(n) = A027907(n, 3), n >= 0 (fourth column of trinomial coefficients). - N. J. A. Sloane, May 16 2003
Convolution of {1, 2, 3, ...} with {2, 3, 4, ...}. - Jon Perry, Jun 25 2003
a(n+2) = 2*te(n) - te(n-1), e.g., a(5) = 2*te(3) - te(2) = 2*20 - 10 = 30, where te(n) are the tetrahedral numbers A000292. - Jon Perry, Jul 23 2003
a(n) is the coefficient of x^3 in the expansion of (1+x+x^2)^n. For example, a(1)=0 since (1+x+x^2)^1=1+x+x^2. - Peter C. Heinig (algorithms(AT)gmx.de), Apr 09 2007
E.g.f.: (x^2 + x^3/6) * exp(x). - Michael Somos, Apr 13 2007
a(n) = - A005586(-4-n) for all n in Z. - Michael Somos, Apr 13 2007
a(n) = C(4+n,3)-(n+4)*(n+1), since C(4+n,3) = number of all triangles in (n+4)-gon, and (n+4)*(n+1)=number of triangles with at least one of the edges included. Example: n=0,in a square, all 4 possible triangles include some of the square's edges and C(4+n,3)-(n+4)*(n+1)=4-4*1=0 = number of other triangles = a(0). - Toby Gottfried, Nov 12 2011
a(n) = 2*binomial(n,2) + binomial(n,3). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(0)=0, a(1)=0, a(2)=2, a(3)=7, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Sep 22 2012
a(n) = A000292(n-1) + A000217(n-1) for all n in Z. - Michael Somos, Jul 29 2015
a(n+2) = -A127672(6+n, n), n >= 0, with A127672 giving the coefficients of Chebyshev's C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
a(n) = GegenbauerC(N, -n, -1/2) where N = 3 if 3Peter Luschny, May 10 2016
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=2} 1/a(n) = 163/200.
Sum_{n>=2} (-1)^n/a(n) = 12*log(2)/5 - 253/200. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000