cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005592 a(n) = F(2n+1) + F(2n-1) - 1.

Original entry on oeis.org

1, 2, 6, 17, 46, 122, 321, 842, 2206, 5777, 15126, 39602, 103681, 271442, 710646, 1860497, 4870846, 12752042, 33385281, 87403802, 228826126, 599074577, 1568397606, 4106118242, 10749957121, 28143753122, 73681302246, 192900153617, 505019158606, 1322157322202
Offset: 0

Views

Author

Keywords

Comments

For any m, the maximum element in the continued fraction of F(2n+m)/F(m) is a(n). - Benoit Cloitre, Jan 10 2006
The continued fraction [a(n);1,a(n)-1,1,a(n)-1,...] = phi^(2n), where phi = 1.618... is the golden ratio, A001622. - Thomas Ordowski, Jun 07 2013
a(n) is the number of labeled subgraphs of the n-cycle C_n. For example, a(3)=17. There are 7 subgraphs of the triangle C_3 with 0 edges, 6 with 1 edge, 3 with 2 edges, and 1 with 3 edges (C_3 itself); here 7+6+3+1 = 17. - John P. McSorley, Oct 31 2016
a(n) equals the sum of the n-th row of triangle A277919. - John P. McSorley, Nov 25 2016

Examples

			G.f. = 1 + 2*x + 6*x^2 + 17*x^3 + 46*x^4 + 122*x^5 + 321*x^6 + 842*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A004146+1 and A005248+1.
Bisection of A014217; the other bisection is A002878, which also bisects A000032.

Programs

  • Haskell
    a005592 n = a005592_list !! (n-1)
    a005592_list = map (subtract 1) $
                       tail $ zipWith (+) a001519_list $ tail a001519_list
    -- Reinhard Zumkeller, Aug 09 2013
  • Magma
    [Fibonacci(2*n+1)+Fibonacci(2*n-1)-1: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Maple
    A005592:=-(2-2*z+z**2)/(z-1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
    # second Maple program:
    F:= n-> (<<0|1>, <1|1>>^n)[1,2]:
    a:= n-> F(2*n+1)+F(2*n-1)-1:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 04 2016
  • Mathematica
    Table[Fibonacci[2n+1]+Fibonacci[2n-1]-1,{n,30}] (* Harvey P. Dale, Aug 22 2011 *)
    a[n_] := LucasL[2n]-1; Array[a, 30] (* Jean-François Alcover, Dec 09 2015 *)
  • PARI
    a(n)=fibonacci(2*n+1)+fibonacci(2*n-1)-1 \\ Charles R Greathouse IV, Aug 23 2011
    
  • Sage
    [lucas_number2(n,3,1)-1 for n in range(1,29)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(n) = Lucas(2*n)-1, with Lucas(n)=A000032(n).
a(n) = floor(r^(2*n)), where r = golden ratio = (1+sqrt(5))/2.
a(n) = floor(Fibonacci(5*n)/Fibonacci(3*n)). - Gary Detlefs, Mar 11 2011
a(n) = +4*a(n-1) -4*a(n-2) +1*a(n-3). - Joerg Arndt, Mar 11 2011
a(n) = A001519(2*n-1) + A001519(2*n+1) - 1. - Reinhard Zumkeller, Aug 09 2013
a(n) = 3*a(n) - a(n-1) + 1; a(n) = A004146(n) + 1, n>0. - Richard R. Forberg, Sep 04 2013
a(n) = 2*cosh(2*n*arcsinh(1/2)) - 1. - Ilya Gutkovskiy, Oct 31 2016
a(n) = floor(sqrt(5)*Fibonacci(2*n)), for n > 0 (Seamons, 1966). - Amiram Eldar, Feb 05 2022

Extensions

Formulae and comments by Clark Kimberling, Nov 24 2010
a(0)=1 prepended by Alois P. Heinz, Nov 04 2016