cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005717 Construct triangle in which n-th row is obtained by expanding (1 + x + x^2)^n and take the next-to-central column.

Original entry on oeis.org

1, 2, 6, 16, 45, 126, 357, 1016, 2907, 8350, 24068, 69576, 201643, 585690, 1704510, 4969152, 14508939, 42422022, 124191258, 363985680, 1067892399, 3136046298, 9217554129, 27114249960, 79818194925, 235128465026, 693085098852, 2044217638456, 6032675068061
Offset: 1

Views

Author

Keywords

Comments

Number of ordered trees with n+1 edges, having root of even degree and nonroot nodes of outdegree at most 2. - Emeric Deutsch, Aug 02 2002
The connection to Motzkin numbers comes from the Lagrange inversion formula. - Michael Somos, Oct 10 2003
Number of horizontal steps in all Motzkin paths of length n. - Emeric Deutsch, Nov 09 2003
Number of UHD's in all Motzkin paths of length n+2 (here U=(1,1), H=(1,0) and D=(1,-1)). Example: a(2)=2 because in the nine Motzkin paths of length 4, HHHH, HHUD, HUDH, H(UHD), UDHH, UDUD, (UHD)H, UHHD and UUDD, we have altogether two UHD's (shown between parentheses). - Emeric Deutsch, Dec 26 2003
Number of ordered trees with n+1 edges, having exactly one leaf at even height. Number of Dyck path of semilength n+1, having exactly one peak at even height. Example: a(3)=6 because we have uuu(ud)ddd, u(ud)dudud, udu(ud)dud, ududu(ud)d, u(ud)uuddd and uuudd(ud)d (here u=(1,1),d=(1,-1) and the unique peak at even height is shown between parentheses). - Emeric Deutsch, Mar 10 2004
a(n) is the number of Dyck (n+1)-paths containing exactly one UDU. - David Callan, Jul 15 2004
Number of peaks in all Motzkin paths of length n+1. - Emeric Deutsch, Sep 01 2004
This is a kind of Motzkin transform of A059841 because the substitution x -> x*A001006(x) in the independent variable of the g.f. of A059841 generates 1,0,1,2,6,16,... that is 1,0 followed by this sequence here. - R. J. Mathar, Nov 08 2008
a(n) is the number of lattice paths avoiding N^(>=3) from (0,0) to (n,n). - Shanzhen Gao, Apr 20 2010
a(n+1) is the number of binary strings having n 0's and n 1's and no appearance of 000. For example, for n = 1, there 2 strings: 01 and 10. For n = 2, there are 6: 0011, 0101, 0110, 1001, 1010, 1100. - Toby Gottfried, Sep 12 2011
a(n) is the number of paths in the half-plane x>=0, from (0,0) to (n,1), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=3, we have the 6 paths HHU, HUH, UDU, UUD, UHH, DUU. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) is the number of ways to tile a strip of length 2*n+1 with squares, dominos, and trominos, where the number of trominos is always one more than the number of squares. - Greg Dresden and Anna Kalynchuk, Jul 30 2025

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 126*x^6 + 357*x^7 + ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A027907.
Cf. A001006, A002426, A005043, A005773, A076540 (binomial transform).

Programs

  • Maple
    seq(add(binomial(i, k) *binomial(i-k, k+1), k=0..floor(i/2)), i=1..30); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    M:= proc(n) option remember; `if` (n<2, 1, (3*(n-1)*M(n-2) +(2*n+1) *M(n-1))/ (n+2)) end: A005717 := n -> n*M(n-1):
    seq(A005717(i), i=1..27); # Peter Luschny, Sep 12 2011
    a := n -> simplify(GegenbauerC(n,-n-1,-1/2)):
    seq(a(n), n=0..28); # Peter Luschny, May 07 2016
  • Mathematica
    Table[Coefficient[Expand[(1+x+x^2)^n], x, n-1], {n, 1, 40}]
    Table[n*Hypergeometric2F1[(1 - n)/2, 1 - n/2, 2, 4], {n, 29}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
    Table[GegenbauerC[n,-n-1,-1/2],{n,0,100}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    makelist(ultraspherical(n,-n-1,-1/2),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, n-1))}; /* Michael Somos, Sep 09 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, n * polcoeff( serreverse( x / (1 + x + x^2) + x * O(x^n)), n))}; /* Michael Somos, Oct 10 2003 */
    
  • PARI
    N=10^3;  x='x+'x*O('x^N);
    gf = 2*x/(1-2*x-3*x^2+(1-x)*sqrt(1-2*x-3*x^2));
    v005717 = Vec(gf);
    /* Joerg Arndt, Aug 16 2012 */
    
  • Python
    def A():
        a, b, n = 0, 1, 1
        while True:
            yield b
            n += 1
            a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
    A005717 = A()
    print([next(A005717) for  in range(29)]) # _Peter Luschny, May 16 2016
    

Formula

a(n) = Sum_{k=1..n} T(k, k-1), where T is the array defined in A025177.
G.f.: 2*x/(1-2*x-3*x^2+(1-x)*sqrt(1-2*x-3*x^2)). - Emeric Deutsch, Aug 14 2002
E.g.f.: exp(x) * I_1(2x), where I_1 is the Bessel function. - Michael Somos, Sep 09 2002
a(n) = A111808(n,n-1). - Reinhard Zumkeller, Aug 17 2005
a(n) = Sum_{k=0..floor((n-1)/3)} (-1)^k * binomial(n,k) * binomial(2n-2-3k, n-1). - David Callan, Jul 03 2006
From Paul Barry, Feb 05 2007: (Start)
a(n) = n*Sum_{k=0..floor((n-1)/2), C(n-1,2k)*C(k)}, C(n) = A000108(n).
a(n) = Sum_{k=0..floor((n-1)/2)} (2k+1)*C(n,2k+1)*C(k).
a(n) = Sum_{k=0..n-1} ( Sum_{j=0..floor(k/2)} C(k,2j)*C(2j+1,j) ). (End)
a(n) = (A002426(n+1) - A002426(n))/2. - Paul Barry, May 22 2008
a(n) = n*A001006(n-1). - Paul Barry, Oct 05 2009
a(n) = Sum_{i=0..floor(n/2)} C(n+1,n-i) * C(n-i,i). - Shanzhen Gao, Apr 20 2010
D-finite with recurrence: (n+1)*a(n) - 3*n*a(n-1) - (n+3)*a(n-2) + 3*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 28 2011
a(n) ~ 3^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 09 2013
0 = a(n) * 3*(n+1)*(n+2) + a(n+1) * (n+2)*(2*n+3) - a(n+2) * (n+1)*(n+3) for all n in Z. - Michael Somos, Apr 03 2014
G.f.: z*M(z)/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
Working with an offset of 0, a(n) = [x^n](1 + x + x^2)^(n+1); binomial transform is A076540. - Peter Bala, Jun 15 2015
a(n) = GegenbauerC(n,-n-1,-1/2). - Peter Luschny, May 07 2016
a(n) = (-1)^(n+1) * n * hypergeom([3/2, 1-n], [3], 4). - Vladimir Reshetnikov, Sep 28 2016
a(n) = Sum_{k=0..n-1} binomial(n,k)*binomial(n-k, k+1) [Krymski and Okhotin]. - Michel Marcus, Dec 04 2020
a(n) = (1/2)*(A005773(n+1) - A005043(n)). - Peter Bala, Feb 11 2022
a(n) = A002426(n) - A005043(n). - Amiram Eldar, May 17 2024

Extensions

More terms from Erich Friedman, Jun 01 2001