A006011 a(n) = n^2*(n^2 - 1)/4.
0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0
Examples
From _Bruno Berselli_, Aug 29 2014: (Start) After the zeros, the sequence is provided by the row sums of the triangle: 3; 4, 14; 5, 16, 39; 6, 18, 42, 84; 7, 20, 45, 88, 155; 8, 22, 48, 92, 160, 258; 9, 24, 51, 96, 165, 264, 399; 10, 26, 54, 100, 170, 270, 406, 584; 11, 28, 57, 104, 175, 276, 413, 592, 819; 12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc., where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Miguel Azaola and Francisco Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., Vol. 27 (2002), pp. 29-48 (see Prop. 4.2(a)).
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Triangular Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
-
Maple
A006011 := proc(n) n^2*(n^2-1)/4 ; end proc: # R. J. Mathar, Nov 29 2015
-
Mathematica
Table[n^2 (n^2 - 1)/4, {n, 0, 38}] Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *) CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *) Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
-
PARI
a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013
Formula
G.f.: 3*(1 + x) / (1 - x)^5.
a(n) = (n-1)*n/2 * n*(n+1)/2 = A000217(n-1)*A000217(n) = 1/2*(n^2-1)*n^2/2 = 1/2*A000217(n^2-1). - Alexander Adamchuk, Apr 13 2006
a(n) = 3*A002415(n) = A047928(n-1)/4 = A083374(n-1)/2 = A008911(n)*3/2. - Zerinvary Lajos, May 09 2007
Ceiling(sqrt(a(n)) + sqrt(a(n-1)))/2 = A000217(n). - Richard R. Forberg, Aug 14 2013
a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014
Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/4. - Stefano Spezia, Mar 12 2024
Comments