cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006011 a(n) = n^2*(n^2 - 1)/4.

Original entry on oeis.org

0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0

Views

Author

Keywords

Comments

Products of two consecutive triangular numbers (A000217).
a(n) is the number of Lyndon words of length 4 on an n-letter alphabet. A Lyndon word is a primitive word that is lexicographically earliest in its cyclic rotation class. For example, a(2)=3 counts 1112, 1122, 1222. - David Callan, Nov 29 2007
For n >= 2 this is the second rightmost column of A163932. - Johannes W. Meijer, Oct 16 2009
Partial sums of A059270. - J. M. Bergot, Jun 27 2013
Using the integers, triangular numbers, and squares plot the points (A001477(n),A001477(n+1)), (A000217(n), A000217(n+1)), and (A000290(n),A000290(n+1)) to create the vertices of a triangle. One-half the area of this triangle = a(n). - J. M. Bergot, Aug 01 2013
a(n) is the Wiener index of the triangular graph T(n+1). - Emeric Deutsch, Aug 26 2013

Examples

			From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
   3;
   4, 14;
   5, 16, 39;
   6, 18, 42,  84;
   7, 20, 45,  88, 155;
   8, 22, 48,  92, 160, 258;
   9, 24, 51,  96, 165, 264, 399;
  10, 26, 54, 100, 170, 270, 406, 584;
  11, 28, 57, 104, 175, 276, 413, 592, 819;
  12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
    
  • Maple
    A006011 := proc(n)
        n^2*(n^2-1)/4 ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
    Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
    Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013

Formula

G.f.: 3*(1 + x) / (1 - x)^5.
a(n) = (n-1)*n/2 * n*(n+1)/2 = A000217(n-1)*A000217(n) = 1/2*(n^2-1)*n^2/2 = 1/2*A000217(n^2-1). - Alexander Adamchuk, Apr 13 2006
a(n) = 3*A002415(n) = A047928(n-1)/4 = A083374(n-1)/2 = A008911(n)*3/2. - Zerinvary Lajos, May 09 2007
a(n) = (A126274(n) - A000537(n+1))/2. - Enrique Pérez Herrero, Mar 11 2013
Ceiling(sqrt(a(n)) + sqrt(a(n-1)))/2 = A000217(n). - Richard R. Forberg, Aug 14 2013
a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014
Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n^2+n) - A000217(n)*A000217(n+1). - Charlie Marion, Feb 15 2020
Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/4. - Stefano Spezia, Mar 12 2024