cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006095 Gaussian binomial coefficient [n, 2] for q = 2.

Original entry on oeis.org

0, 0, 1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
Offset: 0

Views

Author

Keywords

Comments

Number of 4-block coverings of an n-set where every element of the set is covered by exactly 3 blocks (if offset is 3), so a(n) = (1/4!)*(4^n-6*2^n+8). - Vladeta Jovovic, Feb 20 2001
Number of non-coprime pairs of polynomials (f,g) with binary coefficients where both f and g have degree n+1 and nonzero constant term. - Luca Mariot and Enrico Formenti, Sep 26 2016
Number of triplets found from the integers 1 to 2^n-1 by converting to binary and performing an XOR operation on the corresponding bits of each pair. Defining addition in this carryless way (0+0=1+1=0, 0+1=1+0=1), each triplet (A,B,C) has the property A+B=C, A+C=B and B+C=A. For example, n=3 gives the 7 triplets (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7) and (3,5,6). Each integer appears in the set of triplets 2^(n-1)-1 times, for example 3 for n=3. - Ian Duff, Oct 05 2019
Number of 2-dimensional vector subspaces of (Z_2)^n, so also number of Klein subgroups of the group (C_2)^n. - Robert FERREOL, Jul 28 2021

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

First differences: A006516.
Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), this sequence (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Maple
    a:= n-> add((4^(n-1-j) - 2^(n-1-j))/2, j=0..n-1):
    seq(a(n), n=0..24); # Zerinvary Lajos, Jan 04 2007
    A006095 := -z^2/(z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation. [adapted to offset 0 by Peter Luschny, Jul 20 2021]
    a := n -> (2^n - 2)*(2^n - 1)/6:
    seq(a(n), n = 0..24); # Peter Luschny, Jul 20 2021
  • Mathematica
    Join[{a=0,b=0},Table[c=6*b-8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
    CoefficientList[Series[x^2/((1-x)(1-2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{7,-14,8},{0,0,1},30] (* Harvey P. Dale, Jul 22 2011 *)
    (* Next, using elementary symmetric functions *)
    f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]    (* A203235 *)
    Table[a[n]/2, {n, 2, 32}]  (* A006095 *)
    (* Clark Kimberling, Dec 31 2011 *)
    Table[QBinomial[n, 2, 2], {n, 0, 24}] (* Arkadiusz Wesolowski, Nov 12 2015 *)
  • PARI
    a(n) = (2^n - 1)*(2^(n-1) - 1)/3 \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    concat([0, 0], Vec(x^2/((1-x)*(1-2*x)*(1-4*x)) + O(x^50))) \\ Altug Alkan, Nov 12 2015
  • Sage
    [gaussian_binomial(n,2,2) for n in range(0,25)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^2/((1-x)(1-2x)(1-4x)).
a(n) = (2^n - 1)*(2^(n-1) - 1)/3 = 4^n/6 - 2^(n-1) + 1/3.
Row sums of triangle A130324. - Gary W. Adamson, May 24 2007
a(n) = Stirling2(n+1,3) + Stirling2(n+1,4). - Zerinvary Lajos, Oct 04 2007; corrected by R. J. Mathar, Mar 19 2011
a(n) = A139250(2^(n-1) - 1), n >= 1. - Omar E. Pol, Mar 03 2011
a(n) = 4*a(n-1) + 2^(n-1) - 1, n >= 2. - Vincenzo Librandi, Mar 19 2011
a(0) = 0, a(1) = 0, a(2) = 1, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, Jul 22 2011
a(n) = Sum_{k=0..n-2} 2^k*C(2*n-k-2, k), n >= 2. - Johannes W. Meijer, Aug 19 2013
a(n) = Sum_{i=0..n-2, j=i..n-2} 2^{i+j} = 2^0 * (2^0 + 2^1 + ... + 2^(n-2)) + 2^1 * (2^1 + 2^2 + ... + 2^(n-2)) + ... + 2^(n-2) * 2^(n-2), n>1. - J. M. Bergot, May 08 2017
a(n) = a(n-1) + A000217(A000225(n-1)), n > 0. - Ivan N. Ianakiev, Dec 11 2017
E.g.f.: (2*exp(x)-3*exp(2*x)+exp(4*x))/6. - Paul Weisenhorn, Aug 22 2021
From Peter Bala, Jul 01 2025: (Start)
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(3*n)/b(n)*x^n/n ) = 1 + 7*x + 35*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following are examples of telescoping series:
Sum_{n >= 2} 2^n/a(n) = 6, follows from 1 - (1/6)*Sum_{k = 2..n} 2^k/a(k) = 1/(2^n - 1).
Sum_{n >= 2} 2^n/(a(n)*a(n+2)) = 6/49, follows from 1 - (49/6)*Sum_{k = 2..n} 2^k/(a(k)*a(k+2)) = 1/A006096(n+2);
Sum_{n >= 2} 4^n/(a(n)*a(n+2)) = 26/49, follows from 13 - (49/2)*Sum_{k = 2..n} 4^k/(a(k)*a(k+2)) = A086224(n)/A006096(n+2);
Sum_{n >= 2} 8^n/(a(n)*a(n+2)) = 129/49, follows from 43 - (49/3)*Sum_{k = 2..n} 8^k/(a(k)*a(k+2)) = A171479(n+1)/A006096(n+2). (End)