A006355 Number of binary vectors of length n containing no singletons.
1, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634
Offset: 0
Examples
a(6)=10 because we have: 000000, 000011, 000111, 001100, 001111, 110000, 110011, 111000, 111100, 111111. - _Geoffrey Critzer_, Jan 26 2014
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 16, 51.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..4786 (next term has 1001 digits)
- Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Ian F. Blake, The enumeration of certain run length sequences, Information and Control, 55 (1982), 222-237.
- Alexander Burstein, Sergey Kitaev, and Toufik Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
- Steven Finch, Variance of longest run duration in a random bitstring, arXiv:2005.12185 [math.CO], 2020.
- Enoch Haga, Room for Expansion, Word Ways, 33 (No. 2, 2000), pp. 106-113 (see p. 110).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 898.
- Sergey Kitaev and Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.
- Thor Martinsen, Non-Fisherian generalized Fibonacci numbers, Notes Num. Theor. Disc. Math. (2025) Vol. 31, No. 2, 370-389. See p. 389.
- Noriaki Sannomiya, Hosho Katsura, and Yu Nakayama, Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion, arXiv preprint arXiv:1612.02285 [cond-mat.str-el], 2016-2017. See Table II, line 2.
- Eric Weisstein's World of Mathematics, Independent Edge Set, Matching and Pan Graph.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Haskell
a006355 n = a006355_list !! n a006355_list = 1 : fib2s where fib2s = 0 : map (+ 1) (scanl (+) 1 fib2s) -- Reinhard Zumkeller, Mar 20 2013
-
Magma
[1] cat [Lucas(n) - Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Aug 02 2014
-
Maple
a:= n-> if n=0 then 1 else (Matrix([[2,-2]]). Matrix([[1,1], [1,0]])^n) [1,1] fi: seq(a(n), n=0..38); # Alois P. Heinz, Aug 18 2008 a := n -> ifelse(n=0, 1, -2*I^n*ChebyshevU(n-2, -I/2)): seq(simplify(a(n)), n = 0..38); # Peter Luschny, Dec 03 2023
-
Mathematica
Join[{1}, Last[#] - First[#] & /@ Partition[Fibonacci[Range[-1, 40]], 4, 1]] (* Harvey P. Dale, Sep 30 2011 *) Join[{1}, LinearRecurrence[{1, 1}, {0, 2}, 38]] (* Jean-François Alcover, Sep 23 2017 *) (* Programs from Eric W. Weisstein, Oct 03 2017 *) Join[{1}, Table[2 Fibonacci[n], {n, 0, 40}]] Join[{1}, 2 Fibonacci[Range[0, 40]]] CoefficientList[Series[(1-x+x^2)/(1-x-x^2), {x, 0, 40}], x] (* End *)
-
PARI
a(n)=if(n,2*fibonacci(n-1),1) \\ Charles R Greathouse IV, Mar 14 2012
-
PARI
my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^2)) \\ Altug Alkan, Nov 01 2015
-
SageMath
def A006355(n): return 2*fibonacci(n-1) - int(n==0) print([A006355(n) for n in range(51)]) # G. C. Greubel, Apr 18 2025
Formula
a(n+2) = F(n-1) + F(n+2), for n > 0.
G.f.: (1-x+x^2)/(1-x-x^2). - Paul Barry, May 04 2005
a(n) = A119457(n-1,n-2) for n > 2. - Reinhard Zumkeller, May 20 2006
a(n) = 2*F(n-1) for n > 0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + x^2 + (2*k+3)*x - x*(2*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A118658(n) - 0^n. - M. F. Hasler, Nov 05 2014
a(n) = 2^(-n)*((1+r)*(1-r)^n - (1-r)*(1+r)^n)/r for n > 0, where r=sqrt(5). - Colin Barker, Jan 28 2017
a(n) = a(n-1) + a(n-2) for n >= 3. - Armend Shabani, Nov 25 2020
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1. - Stefano Spezia, Apr 18 2022
a(n) = F(n-3) + F(n-2) + F(n-1) for n >= 3, where F(n)=A000045(n). - Gergely Földvári, Aug 03 2024
Extensions
Corrected by T. D. Noe, Oct 31 2006
Comments