A006498 a(n) = a(n-1) + a(n-3) + a(n-4), a(0) = a(1) = a(2) = 1, a(3) = 2.
1, 1, 1, 2, 4, 6, 9, 15, 25, 40, 64, 104, 169, 273, 441, 714, 1156, 1870, 3025, 4895, 7921, 12816, 20736, 33552, 54289, 87841, 142129, 229970, 372100, 602070, 974169, 1576239, 2550409, 4126648, 6677056, 10803704, 17480761, 28284465, 45765225, 74049690, 119814916
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 15*x^7 + 25*x^8 + 40*x^9 + ... From _Gus Wiseman_, Nov 27 2019: (Start) The a(2) = 1 through a(7) = 15 subsets with no two elements differing by 2: {} {} {} {} {} {} {1} {1} {1} {1} {1} {2} {2} {2} {2} {1,2} {3} {3} {3} {1,2} {4} {4} {2,3} {1,2} {5} {1,4} {1,2} {2,3} {1,4} {3,4} {1,5} {2,3} {2,5} {3,4} {4,5} {1,2,5} {1,4,5} (End)
References
- E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see pp. 157 and 172.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See pp. 16, 18.
- D. Applegate, M. LeBrun, and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- Said Amrouche and Hacène Belbachir, Unimodality and linear recurrences associated with rays in the Delannoy triangle, Turkish Journal of Mathematics (2019) Vol. 44, 118-130.
- Joerg Arndt, Matters Computational (The Fxtbook), section 14.10.1, p.320.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
- V. Baltic, Applications of the finite state automata for counting restricted permutations and variations, Yug. J. Oper. Res. 22 (2012) 183-198, Sec. 3
- G. E. Bergum and V. E. Hoggatt, Jr., A combinatorial problem involving recursive sequences and tridiagonal matrices, Fib. Quart., 16 (1978), 113-118.
- M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461.
- K. Edwards, A Pascal-like triangle related to the tribonacci numbers, Fib. Q., 46/47 (2008/2009), 18-25.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- T. Guardia and D. Jiménez, Fiboquadratic Sequences and Extensions of the Cassini Identity Raised From the Study of Rithmomachia, arXiv preprint arXiv:1509.03177 [math.HO], 2015-2016.
- John Konvalina, Yi-Hsin Liu, subsets without q-separation and binomial products of Fibonacci numbers, J. Comb. Theo. A 57 (2) (1991) 306-310, T_n.
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- M. Tetiva, Subsets that make no difference d, Mathematics Magazine 84 (2011), no. 4, 300-301.
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Crossrefs
Programs
-
Haskell
a006498 n = a006498_list !! n a006498_list = 1 : 1 : 1 : 2 : zipWith (+) (drop 3 a006498_list) (zipWith (+) (tail a006498_list) a006498_list) -- Reinhard Zumkeller, Apr 07 2012
-
Magma
[ n eq 1 select 1 else n eq 2 select 1 else n eq 3 select 1 else n eq 4 select 2 else Self(n-1)+Self(n-3)+ Self(n-4): n in [1..40] ]; // Vincenzo Librandi, Aug 20 2011
-
Mathematica
LinearRecurrence[{1,0,1,1},{1,1,1,2},50] (* Harvey P. Dale, Jul 13 2011 *) Table[Fibonacci[Floor[n/2] + 2]^Mod[n, 2]*Fibonacci[Floor[n/2] + 1]^(2 - Mod[n, 2]), {n, 0, 40}] (* David Nacin, Feb 29 2012 *) a[ n_] := Fibonacci[ Quotient[ n+2, 2]] Fibonacci[ Quotient[ n+3, 2]] (* Michael Somos, Jan 19 2014 *) Table[Length[Select[Subsets[Range[n]],!MatchQ[#,{_,x_,_,y_,_}/;x+2==y]&]],{n,10}] (* Gus Wiseman, Nov 27 2019 *)
-
PARI
{a(n) = fibonacci( (n+2)\2 ) * fibonacci( (n+3)\2 )} /* Michael Somos, Mar 10 2004 */
-
PARI
Vec(1/(1-x-x^3-x^4)+O(x^66))
-
Python
def a(n, adict={0:1, 1:1, 2:1, 3:2}): if n in adict: return adict[n] adict[n]=a(n-1)+a(n-3)+a(n-4) return adict[n] # David Nacin, Mar 07 2012
Formula
G.f.: 1 / ((1 + x^2) * (1 - x - x^2)); a(2*n) = F(n+1)^2, a(2*n - 1) = F(n+1)*F(n). a(n) = a(-4-n) * (-1)^n. - Michael Somos, Mar 10 2004
The g.f. -(1+z+2*z^2+z^3)/((z^2+z-1)*(1+z^2)) for the truncated version 1, 2, 4, 6, 9, 15, 25, 40, ... was given in the Simon Plouffe thesis of 1992. [edited by R. J. Mathar, May 13 2008]
From Vladeta Jovovic, May 03 2002: (Start)
a(n) = round((-(1/5)*sqrt(5) - 1/5)*(-2*1/(-sqrt(5)+1))^n/(-sqrt(5)+1) + ((1/5)*sqrt(5) - 1/5)*(-2*1/( sqrt(5)+1))^n/(sqrt(5)+1)).
G.f.: 1/(1-x-x^2)/(1+x^2). (End)
a(n) = (-i)^n*Sum{k=0..n} U(n-2k, i/2) where i^2=-1. - Paul Barry, Nov 15 2003
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*F(n-2k+1). - Paul Barry, Oct 12 2007
F(floor(n/2) + 2)^(n mod 2)*F(floor(n/2) + 1)^(2 - (n mod 2)) where F(n) is the n-th Fibonacci number. - David Nacin, Feb 29 2012
a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z. - Michael Somos, Jan 19 2014
a(n) = round(1/(1/F(n+2) + 2/F(n+3))), where F(n) = A000045, and 0.5 is rounded to 1. - Richard R. Forberg, Aug 04 2014
a(n) = Sum_{j=0..floor(n/3)} Sum_{k=0..j} binomial(n-3j,k)*binomial(j,k)*2^k. - Tony Foster III, Sep 18 2017
E.g.f.: (2*cos(x) + sin(x) + exp(x/2)*(3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Mar 12 2024
Comments