cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A144064 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->k).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 5, 0, 1, 5, 14, 22, 20, 7, 0, 1, 6, 20, 40, 51, 36, 11, 0, 1, 7, 27, 65, 105, 108, 65, 15, 0, 1, 8, 35, 98, 190, 252, 221, 110, 22, 0, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 0, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Comments

A(n,k) is also the number of partitions of n into parts of k kinds.
In general, column k > 0 is asymptotic to k^((k+1)/4) * exp(Pi*sqrt(2*k*n/3)) / (2^((3*k+5)/4) * 3^((k+1)/4) * n^((k+3)/4)) * (1 - (Pi*k^(3/2)/(24*sqrt(6)) + sqrt(3)*(k+1)*(k+3)/(8*Pi*sqrt(2*k))) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017
When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field with k elements that contain an upper-triangular matrix. - Geoffrey Critzer, Nov 11 2022

Examples

			Square array begins:
  1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5, ...
  0,   2,   5,   9,  14,  20, ...
  0,   3,  10,  22,  40,  65, ...
  0,   5,  20,  51, 105, 190, ...
  0,   7,  36, 108, 252, 506, ...
		

Crossrefs

Cf. A082556 (k=30), A082557 (k=32), A082558 (k=48), A082559 (k=64).
Rows n=0-4 give: A000012, A001477, A000096, A006503, A006504.
Main diagonal gives A008485.
Antidiagonal sums give A067687.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A144064Column(k, len) = DedekindEta(len, -k)
    for n in 0:8 A144064Column(n, 6) |> println end # Peter Luschny, Mar 10 2018
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    a[0, ] = 1; a[, 0] = 0; a[n_, k_] := SeriesCoefficient[ Product[1/(1 - x^j)^k, {j, 1, n}], {x, 0, n}]; Table[a[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]} ]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[k&][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
  • PARI
    Mat(apply( {A144064_col(k,nMax=9)=Col(1/eta('x+O('x^nMax))^k,nMax)}, [0..9])) \\ M. F. Hasler, Aug 04 2024

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^k.
A(n,k) = Sum_{i=0..k} binomial(k,i) * A060642(n,k-i):

A067687 Expansion of 1/( 1 - x / Product_{n>=1} (1-x^n) ).

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 69, 165, 393, 937, 2233, 5322, 12683, 30227, 72037, 171680, 409151, 975097, 2323870, 5538294, 13198973, 31456058, 74966710, 178662171, 425791279, 1014754341, 2418382956, 5763538903, 13735781840, 32735391558, 78015643589
Offset: 0

Views

Author

Alford Arnold, Feb 05 2002

Keywords

Comments

Previous name was: Invert transform of right-shifted partition function (A000041).
Sums of the antidiagonals of the array formed by sequences A000007, A000041, A000712, A000716, ... or its transpose A000012, A000027, A000096, A006503, A006504, ....
Row sums of triangle A143866 = (1, 2, 5, 12, 29, 69, 165, ...) and right border of A143866 = (1, 1, 2, 5, 12, ...). - Gary W. Adamson, Sep 04 2008
Starting with offset 1 = A137682 / A000041; i.e. (1, 3, 7, 17, 40, 96, ...) / (1, 2, 3, 5, 7, 11, ...). - Gary W. Adamson, May 01 2009
From L. Edson Jeffery, Mar 16 2011: (Start)
Another approach is the following. Let T be the infinite lower triangular matrix with columns C_k (k=0,1,2,...) such that C_0=A000041 and, for k > 0, such that C_k is the sequence giving the number of partitions of n into parts of k+1 kinds (successive self-convolutions of A000041 yielding A000712, A000716, ...) and shifted down by k rows. Then T begins (ignoring trailing zero entries in the rows)
(1, 0, ... )
(1, 1, 0, ... )
(2, 2, 1, 0, ... )
(3, 5, 3, 1, 0, ... )
(5, 10, 9, 4, 1, 0, ...)
etc., and a(n) is the sum of entries in row n of T. (End)

Examples

			The array begins:
  1,  1,  1,   1,   1,  1,  1, 1, ...
  0,  1,  2,   3,   4,  5,  6, 7, ...
  0,  2,  5,   9,  14, 20, 27, ...
  0,  3, 10,  22,  40, 65, ...
  0,  5, 20,  51, 105, ...
  0,  7, 36, 108, ...
  0, 11, 65, ...
		

Crossrefs

Cf. table A060850.
Antidiagonal sums of A144064.

Programs

  • PARI
    N=66; x='x+O('x^N); et=eta(x); Vec( sum(n=0,N, x^n/et^n ) ) \\ Joerg Arndt, May 08 2009

Formula

a(n) = Sum_{k=1..n} A000041(k-1)*a(n-k). - Vladeta Jovovic, Apr 07 2003
O.g.f.: 1/(1-x*P(x)), P(x) - o.g.f. for number of partitions (A000041). - Vladimir Kruchinin, Aug 10 2010
a(n) ~ c / r^n, where r = A347968 = 0.419600352598356478498775753566700025318... is the root of the equation QPochhammer(r) = r and c = 0.3777957165566422058901624844315414446044096308877617181754... = Log[r]/(Log[(1 - r)*r] + QPolyGamma[1, r] - Log[r]*Derivative[0, 1][QPochhammer][r, r]). - Vaclav Kotesovec, Feb 16 2017, updated Mar 31 2018

Extensions

More terms from Vladeta Jovovic, Apr 07 2003
More terms and better definition from Franklin T. Adams-Watters, Mar 14 2006
New name (using g.f. by Vladimir Kruchinin), Joerg Arndt, Feb 19 2014

A006503 a(n) = n*(n+1)*(n+8)/6.

Original entry on oeis.org

0, 3, 10, 22, 40, 65, 98, 140, 192, 255, 330, 418, 520, 637, 770, 920, 1088, 1275, 1482, 1710, 1960, 2233, 2530, 2852, 3200, 3575, 3978, 4410, 4872, 5365, 5890, 6448, 7040, 7667, 8330, 9030, 9768, 10545, 11362, 12220, 13120, 14063, 15050, 16082, 17160, 18285
Offset: 0

Views

Author

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=4, a(n-4) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007
The coefficient of x^3 in (1-x-x^2)^{-n} is the coefficient of x^3 in (1+x+2x^2+3x^3)^n. Using the multinomial theorem one then finds that a(n)=n(n+1)(n+8)/3!. - Sergio Falcon, May 22 2008

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A095660(n+2, 3): fourth column of (1, 3)-Pascal triangle.
Row n=3 of A144064.

Programs

  • Maple
    A006503:=-(-3+2*z)/(z-1)**4; # [Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    Clear["Global`*"] a[n_] := n(n + 1)(n + 8)/3! Do[Print[n, " ", a[n]], {n, 1, 25}] (* Sergio Falcon, May 22 2008 *)
    Table[n(n+1)(n+8)/6,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,3,10,22},50] (* Harvey P. Dale, Jan 27 2016 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(3-2*x)/(1-x)^4)) \\ G. C. Greubel, May 11 2017

Formula

a(n) = n*(n+1)*(n+8)/6.
G.f.: x*(3-2*x)/(1-x)^4.
a(n) = A000292(n) + A002378(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = 4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4) with a(0)=0, a(1)=3, a(2)=10, a(3)=22. - Harvey P. Dale, Jan 27 2016

Extensions

Better description from Jeffrey Shallit, Aug 1995

A060850 Array of the coefficients A(n,k) in the expansion of Product_{i>=1} 1/(1-x^i)^n = Sum_{k>=0} A(n,k)*x^k, n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 9, 10, 5, 1, 5, 14, 22, 20, 7, 1, 6, 20, 40, 51, 36, 11, 1, 7, 27, 65, 105, 108, 65, 15, 1, 8, 35, 98, 190, 252, 221, 110, 22, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 1, 11, 65, 255
Offset: 1

Views

Author

Bo T. Ahlander (ahlboa(AT)isk.kth.se), May 03 2001

Keywords

Comments

Table read by antidiagonals: entry (n,k) gives number of partitions of n objects into parts of k kinds. - Franklin T. Adams-Watters, Dec 28 2006

Examples

			Table (row k, k >= 0: number of partitions of n, n >= 0, into parts of k kinds):
Array begins:
=======================================================================
k\n| 0   1   2    3     4     5      6       7       8       9       10
---|-------------------------------------------------------------------
1  | 1   1   2    3     5     7     11      15      22      30       42
2  | 1   2   5   10    20    36     65     110     185     300      481
3  | 1   3   9   22    51   108    221     429     810    1479     2640
4  | 1   4  14   40   105   252    574    1240    2580    5180    10108
5  | 1   5  20   65   190   506   1265    2990    6765   14725    31027
6  | 1   6  27   98   315   918   2492    6372   15525   36280    81816
7  | 1   7  35  140   490  1547   4522   12405   32305   80465   192899
8  | 1   8  44  192   726  2464   7704   22528   62337  164560   417140
9  | 1   9  54  255  1035  3753  12483   38709  113265  315445   841842
10 | 1  10  65  330  1430  5512  19415   63570  195910  573430  1605340
11 | 1  11  77  418  1925  7854  29183  100529  325193  997150  2919411
  ...
Triangle (row n, n >= 0: number of partitions of n into parts of n - k kinds, 0 <= k <= n) (antidiagonals of above table) (parenthesized last term on each row, which would correspond to row k = 0 in above table)
Triangle begins: (column k: n - k kinds of parts)
===================================
n\k| 0   1   2   3   4   5   6   7
---+-------------------------------
0  |(1)
1  | 1, (0)
2  | 1,  1, (0)
3  | 1,  2,  2, (0)
4  | 1,  3,  5,  3, (0)
5  | 1,  4,  9, 10,  5, (0)
6  | 1,  5, 14, 22, 20,  7, (0)
7  | 1,  6, 20, 40, 51, 36, 11, (0)
  ...
		

Crossrefs

Cf. A067687 (table antidiagonal sums, triangle row sums).
Rows (table), diagonals (triangle): A000041, A000712, A000716, A023003-A023021, A006922.
Columns (table, triangle): A000012, A001477, A000096, A006503, A006504.

Programs

  • Mathematica
    t[n_, k_] := CoefficientList[ Series[ Product[1/(1 - x^i)^n, {i, k}], {x, 0, k}], x][[k]]; (* Robert G. Wilson v, Aug 08 2018 *)
    t[n_, k_]; = IntegerPartitions[n, {k}]; Table[ t[n - k + 1, k], {n, 12}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 08 2018 *)

Formula

G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=1..n} A000041(k-1)*A(n-k;x)*x^(k-1), A(0;x) = 1. - Vladeta Jovovic, Jan 02 2004

Extensions

More terms from Vladeta Jovovic, Jan 02 2004

A139798 Coefficient of x^5 in (1-x-x^2)^(-n).

Original entry on oeis.org

8, 38, 111, 256, 511, 924, 1554, 2472, 3762, 5522, 7865, 10920, 14833, 19768, 25908, 33456, 42636, 53694, 66899, 82544, 100947, 122452, 147430, 176280, 209430, 247338, 290493, 339416, 394661, 456816, 526504, 604384, 691152, 787542
Offset: 1

Views

Author

Sergio Falcon, May 22 2008

Keywords

Comments

The coefficient of x^5 in (1-x-x^2)^(-n) is the coefficient of x^5 in (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5)^n. Using the multinomial theorem one then finds that a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
The inverse binomial transform yields 8,30,43,29,9,1,0,0,... (0 continued) - R. J. Mathar, May 23 2008

References

  • Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Crossrefs

Programs

  • Mathematica
    a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{8,38,111,256,511,924},40] (* Harvey P. Dale, Oct 13 2015 *)
  • PARI
    a(n)=binomial(n+2,3)*(n^2+27*n+132)/20 \\ Charles R Greathouse IV, Jul 29 2011

Formula

a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
O.g.f.: x(3x-4)(x-2)/(1-x)^6. - R. J. Mathar, May 23 2008

Extensions

More terms from R. J. Mathar, May 23 2008
Showing 1-5 of 5 results.