A006578 Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)).
0, 1, 4, 8, 14, 21, 30, 40, 52, 65, 80, 96, 114, 133, 154, 176, 200, 225, 252, 280, 310, 341, 374, 408, 444, 481, 520, 560, 602, 645, 690, 736, 784, 833, 884, 936, 990, 1045, 1102, 1160, 1220, 1281, 1344, 1408, 1474, 1541, 1610, 1680, 1752, 1825, 1900, 1976, 2054
Offset: 0
Examples
G.f. = x + 4*x^2 + 8*x^3 + 14*x^4 + 21*x^5 + 30*x^6 + 40*x^7 + 52*x^8 + 65*x^9 + ...
References
- Marc LeBrun, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Bruno Berselli, Hexagonal spiral containing the initial terms.
- Marc Le Brun, Email to N. J. A. Sloane, Jul 1991
- Emanuele Munarini, Topological indices for the antiregular graphs, Le Mathematiche (2021) Vol. 76, No. 1, see p. 283.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[(6*n^2+4*n-1+(-1)^n)/8: n in [0..50] ]; // Vincenzo Librandi, Aug 20 2011
-
Maple
with (combinat): seq(count(Partition((3*n+1)), size=3), n=0..52); # Zerinvary Lajos, Mar 28 2008 # 2nd program A006578 := proc(n) (6*n^2 + 4*n - 1 + (-1)^n)/8 ; end proc: # R. J. Mathar, Apr 28 2017
-
Mathematica
Accumulate[LinearRecurrence[{1,1,-1}, {0,1,3}, 100]] (* Harvey P. Dale, Sep 29 2013 *) a[ n_] := Quotient[n + 1, 2] (Quotient[n, 2] 3 + 1); (* Michael Somos, Jun 09 2014 *) a[ n_] := Quotient[3 (n + 1)^2 + 1, 4] - (n + 1); (* Michael Somos, Jun 10 2015 *) LinearRecurrence[{2, 0, -2, 1},{0, 1, 4, 8},53] (* Ray Chandler, Aug 03 2015 *)
-
PARI
{a(n) = (3*(n+1)^2 + 1)\4 - n - 1}; /* Michael Somos, Mar 10 2006 */
Formula
Expansion of x*(1+2*x) / ((1-x)^2*(1-x^2)). - Simon Plouffe in his 1992 dissertation
Partial sums of A032766. - Paul Barry, May 30 2003
a(n) = a(n-1) + a(n-2) - a(n-3) + 3 = A002620(n) + A004526(n) = A001859(n) - A004526(n+1). - Henry Bottomley, Mar 08 2000
a(n) = (6*n^2 + 4*n - 1 + (-1)^n)/8. - Paul Barry, May 30 2003
a(n) = A001859(-1-n) for all n in Z. - Michael Somos, May 10 2006
a(n) = (3*n^2 + 2*n - (n mod 2))/4. - Ctibor O. Zizka, Mar 11 2012
a(n) = Sum_{i=1..n} floor(3*i/2) = Sum_{i=0..n} (i + floor(i/2)). - Enrique Pérez Herrero, Apr 21 2012
a(n) = 3*n*(n+1)/2 - A001859(n). - Clark Kimberling, Jul 02 2012
a(n) = Sum_{i=1..n} (n - i + 1) * 2^( (i+1) mod 2 ). - Wesley Ivan Hurt, Mar 30 2014
a(n) = Sum_{k=1..n} floor((n+k+1)/2). - Wesley Ivan Hurt, Mar 31 2017
Sum_{n>=1} 1/a(n) = 3 - Pi/(4*sqrt(3)) - 3*log(3)/4. - Amiram Eldar, May 28 2022
E.g.f.: (x*(5 + 3*x)*cosh(x) - (1 - 5*x - 3*x^2)*sinh(x))/4. - Stefano Spezia, Aug 22 2023
Extensions
Offset and description changed by N. J. A. Sloane, Nov 30 2006
Comments