A156792
Triangle read by rows, T(n,k) = (A156791(n-k+1) * (A006973 * 0^(n-k))).
Original entry on oeis.org
1, 1, 1, 6, 1, 2, 7, 6, 2, 9, 78, 7, 12, 9, 24, 420, 78, 14, 54, 24, 130, 6872, 420, 156, 63, 144, 130, 720, 17253, 6872, 840, 702, 168, 780, 720, 8505, 326552, 17253, 13744, 3780, 1872, 910, 4320, 8505, 35840
Offset: 0
First few rows of the triangle:
1,
1, 1;
6, 1, 2;
7, 6, 2, 9;
78, 7, 12, 9, 24;
420, 78, 14 54, 24, 130;
6872, 420, 156, 63, 144, 130, 720;
17253, 6872, 840, 702, 168, 780, 720, 8505;
326552, 17253, 13744, 3780, 1872, 910, 4320, 8505, 35840;
...
Example: Row 4 = (7, 6, 2, 9) = termwise products of (7, 6, 1, 1) and (1, 1, 2, 9).
-
A006973[n_]:= A006973[n]= If[n<4, Max[n-1, 0], (n-1)!*(1 + Sum[k*(-A006973[k]/k!)^(n/k), {k, Most[Divisors[n]]}])];
S[n_, x_]:= Sum[A006973[j]*x^j, {j, 0, n+2}];
A156791:= With[{p=100}, CoefficientList[Series[S[p,x]/(x + S[p,x]), {x,0,p}], x]]
A156792[n_, k_]:= A156791[[n-k+2]]*(Boole[k==0] + A006973[k+1]);
Table[A156792[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 11 2021 *)
Typo in last line of triangle corrected by
Olivier Gérard, Aug 11 2016
Original entry on oeis.org
1, 1, 6, 7, 78, 420, 6872, 17253, 326552, 2680988, 33949242, 386091406, 5974089338, 67562271804, 1708769998136, 16983594666421, 329723068729854, 5611760457560028, 121573316570762036, 2099347805249971662, 50720938223339101844, 1008798617234428297708
Offset: 1
The sequence begins (1, 1, ...); then for all further a(n), write (n-1) terms of A006973 backwards. Take the dot of the latter and the first (n-1) terms of sequence. Subtract from the next term of A006973.
Example: a(4) = 7 = (24 - (9, 2, 1) dot (1, 1, 6)) = 24 - 17.
-
A006973[n_]:= A006973[n]= If[n<4, Max[n-1, 0], (n-1)!*(1 + Sum[k*(-A006973[k]/k!)^(n/k), {k, Most[Divisors[n]]}])];
S[n_, x_]:= Sum[A006973[j]*x^j, {j, 0, n+2}];
Rest@With[{p = 100}, CoefficientList[Series[S[p,x]/(x + S[p,x]), {x,0,60}], x]] (* G. C. Greubel, Jun 10 2021 *)
A137852
G.f.: Product_{n>=1} (1 + a(n)*x^n/n!) = exp(x).
Original entry on oeis.org
1, 1, -2, 9, -24, 130, -720, 8505, -35840, 412776, -3628800, 42030450, -479001600, 7019298000, -82614884352, 1886805545625, -20922789888000, 374426276224000, -6402373705728000, 134987215801622184, -2379913632645120000, 55685679780013920000
Offset: 1
exp(x) = (1+x)*(1+x^2/2!)*(1-2*x^3/3!)*(1+9*x^4/4!)*(1-24*x^5/5!)* (1+130*x^6/6!)*(1-720*x^7/7!)*(1+8505*x^8/8!)*(1-35840*x^9/9!)*(1+412776*x^10/10!)*(1-3628800*x^11/11!)*...*(1+a(n)*x^n/n!)*...
Another recurrence: n=6; m=1,2,3=maxm(6)=A003056(6); fp(6,2) from {(1,5),(2,4)}, fp(6,3)=(1,2,3); a(6)= 1 - ( 6*a(1)*a(5) + 15*a(2)*a(4) + 60*a(1)*a(2)*a(3)). Check: 1 - (6*1*(-24) + 15*1*9 +60*1*1*(-2)) = 130 = a(6). - _Wolfdieter Lang_, Feb 20 2009
-
with(numtheory):
a:= proc(n) option remember; `if`(n=1, 1, (n-1)!*((-1)^n+
add(d*(-a(d)/d!)^(n/d), d=divisors(n) minus {1, n})))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Aug 14 2012
-
max = 22; f[x_] := Product[1 + a[n] x^n/n!, {n, 1, max}]; coes = CoefficientList[ Series[f[x] - Exp[x], {x, 0, max}], x]; sol = Solve[ Thread[coes == 0]][[1]]; Table[a[n] /. sol, {n, 1, max}] (* Jean-François Alcover, Nov 28 2011 *)
a[1] = 1; a[n_] := a[n] = (n-1)!*((-1)^n + Sum[d*(-a[d]/d!)^(n/d), {d, Divisors[n] ~Complement~ {1, n}}]);
Array[a, 30] (* Jean-François Alcover, Jan 11 2018 *)
-
{a(n)=if(n<1,0,if(n==1,1,(n-1)!*((-1)^n + sumdiv(n,d, if(d1, d*(-a(d)/d!)^(n/d))))))}
for(n=1,30,print1(a(n),", "))
-
/* As coefficients in product g.f.: */
{a(n)=if(n<1,0,n!*polcoeff(exp(x +x*O(x^n))/prod(k=0,n-1,1+a(k)*x^k/k! +x*O(x^n)),n))}
for(n=1,30,print1(a(n),", "))
A006173
Witt vector *2!.
Original entry on oeis.org
2, 1, 4, 13, 44, 135, 472, 1492, 5324, 17405, 63944, 215096, 799416, 2752909, 10310384, 36443256, 137263244, 489166324, 1860249448, 6739795717, 25596173800, 93596253769, 357974884304, 1319325363658, 5056389932088
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. Gaudier, Relèvement des coefficients binomiaux dans les vecteurs de Witt, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 16 (1988), 358/S-18, pp. 93-108.
- H. Gaudier, Relèvement des coefficients binomiaux dans les vecteurs de Witt, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 16 (1988), 358/S-18, pp. 93-107. (Annotated scanned copy)
A147542
Product(1 + a(n)*x^n, n=1..infinity) = sum(F(k+1)*x^k, k=1..infinity) = 1/(1-x-x^2), where F(n) = A000045(n) (Fibonacci numbers).
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 4, 18, 8, 8, 18, 17, 40, 50, 88, 396, 210, 296, 492, 690, 1144, 1776, 2786, 3545, 6704, 10610, 16096, 25524, 39650, 63544, 97108, 269154, 236880, 389400, 589298, 956000, 1459960, 2393538, 3604880, 5739132, 9030450, 14777200
Offset: 1
-
m = 200;
sol = Thread[CoefficientList[Sum[Log[1 + a[n] x^n], {n, 1, m}] - Log[1/(1 - x - x^2)] + O[x]^(m + 1), x] == 0] // Solve // First;
Array[a, m] /. sol (* Jean-François Alcover, Oct 22 2019 *)
A157159
Infinite product representation of series 1 - log(1-x) = 1 + Sum_{j>=1} (j-1)!*(x^j)/j!.
Original entry on oeis.org
1, 1, -1, 10, -16, 126, -526, 10312, -30024, 453840, -2805408, 45779328, -374664720, 7932770496, -67692115440, 2432120198016, -16610113920768, 437275706750208, -5110200130727808, 159305381515284480, -1931470594025607936, 63854116254680514048
Offset: 1
Recurrence I: a(7) = 6! - (7*a(1)*a(6) + 21*a(2)*a(5) + 35*a(3)*a(4) + 105*a(1)*a(2)*a(4)) = 720 - (7*126 + 21*(-16) + 35*(-1)*10 + 105*10) = -526.
Recurrence II: a(4) = 3!*(1+2*(-1/2!)^2) + 1 = +10.
-
a:= proc(n) option remember; `if`(n=1, 1, (n-1)!*((-1)^n+add(d*
(-a(d)/d!)^(n/d), d=numtheory[divisors](n) minus {1, n}))
+(-1)^(n+1)*add((k-1)!*Stirling1(n, k), k=1..n))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Aug 14 2012
-
a[n_] := a[n] = If[n == 1, 1, (n-1)!*((-1)^n+Sum[d*(-a[d]/d!)^(n/d), {d, Divisors[n][[2 ;; -2]]}])+(-1)^(n+1)*Sum[(k-1)!*StirlingS1[n, k], {k, 1, n}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
A353607
Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + sin(x).
Original entry on oeis.org
1, 0, -1, 4, -19, 114, -659, 5328, -38375, 400430, -3578279, 44920360, -476298835, 6949878740, -85215100151, 1492480745728, -20903398375855, 382829285287446, -6399968826052559, 136747967762351544, -2394435177245209195, 55602194767215266060, -1123931378903214542099
Offset: 1
-
nn = 23; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Sin[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A353608
Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + sinh(x).
Original entry on oeis.org
1, 0, 1, -4, 21, -126, 1023, -8240, 84745, -864370, 10925883, -133566808, 1994183205, -28455880012, 489891177051, -8112780640000, 158096182329585, -2911196026492074, 64115697136312563, -1328879415116924744, 31920276313015362525, -728711636884140292372
Offset: 1
-
nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Sinh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A353611
Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + tan(x).
Original entry on oeis.org
1, 0, 2, -8, 56, -336, 3184, -27264, 309760, -3297280, 48104704, -624745472, 10591523840, -159594803200, 3133776259072, -56224864108544, 1249919350046720, -24600643845095424, 624022403933077504, -14094091678163140608, 381632216575339397120, -9516741266133420605440
Offset: 1
-
nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A353609
Product_{n>=1} (1 + a(n)*x^(2*n)/(2*n)!) = cosh(x).
Original entry on oeis.org
1, 1, -14, 393, -14744, 972610, -74928944, 9322093753, -1163849271296, 228519734620776, -44942000161435904, 12717856972091286642, -3539995034294896016384, 1371560847857743301790928, -510461123036204706738612224, 268938575250382935485761673113
Offset: 1
-
nn = 16; f[x_] := Product[(1 + a[n] x^(2 n)/(2 n)!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Cosh[x], {x, 0, 2 nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
Showing 1-10 of 24 results.
Comments