cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007406 Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^2.

Original entry on oeis.org

1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141, 1968329, 239437889, 240505109, 40799043101, 40931552621, 205234915681, 822968714749, 238357395880861, 238820721143261, 86364397717734821, 17299975731542641, 353562301485889, 354019312583809, 187497409728228241
Offset: 1

Views

Author

Keywords

Comments

By Wolstenholme's theorem, p divides a(p-1) for prime p > 3. - T. D. Noe, Sep 05 2002
Also p divides a( (p-1)/2 ) for prime p > 3. - Alexander Adamchuk, Jun 07 2006
The rationals a(n)/A007407(n) converge to Zeta(2) = (Pi^2)/6 = 1.6449340668... (see the decimal expansion A013661).
For the rationals a(n)/A007407(n), n >= 1, see the W. Lang link under A103345 (case k=2).
See the Wolfdieter Lang link under A103345 on Zeta(k, n) with the rationals for k=1..10, g.f.s and polygamma formulas. - Wolfdieter Lang, Dec 03 2013
Denominator of the harmonic mean of the first n squares. - Colin Barker, Nov 13 2014
Conjecture: for n > 3, gcd(n, a(n-1)) = A089026(n). Checked up to n = 10^5. - Amiram Eldar and Thomas Ordowski, Jul 28 2019
True if n is prime, by Wolstenholme's theorem. It remains to show that gcd(n, a(n-1)) = 1 if n > 3 is composite. - Jonathan Sondow, Jul 29 2019
From Peter Bala, Feb 16 2022: (Start)
Sum_{k = 1..n} 1/k^2 = 1 + (1 - 1/2^2)*(n-1)/(n+1) - (1/2^2 - 1/3^2)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/3^2 - 1/4^2)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - (1/4^2 - 1/5^2)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + .... Cf. A082687 and A120778.
This identity allows us to extend the definition of Sum_{k = 1..n} 1/k^2 to non-integral values of n. (End)
Numerators of the Eulerian numbers T(-2,k) for k = 0,1..., if T(n,k) is extended to negative n by the recurrence T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) (indexed as in A173018). - Michael J. Collins, Oct 10 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001008, A007407 (denominators), A000290, A082687, A120778.
Numbers n such that a(n) is prime are listed in A111354. Primes in {a(n)} are listed in A123751. - Alexander Adamchuk, Oct 11 2006

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a007406 n = a007406_list !! (n-1)
    a007406_list = map numerator $ scanl1 (+) $ map (1 %) $ tail a000290_list
    -- Reinhard Zumkeller, Jul 06 2012
    
  • Magma
    [Numerator(&+[1/k^2:k in [1..n]]):n in [1..23]]; // Marius A. Burtea, Aug 02 2019
  • Maple
    a:= n-> numer(add(1/i^2, i=1..n)): seq(a(n), n=1..24);  # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    a[n_] := If[ n<1, 0, Numerator[HarmonicNumber[n, 2]]]; Table[a[n], {n, 100}]
    Numerator[HarmonicNumber[Range[20],2]] (* Harvey P. Dale, Jul 06 2014 *)
  • PARI
    {a(n) = if( n<1, 0, numerator( sum( k=1, n, 1 / k^2 ) ) )} /* Michael Somos, Jan 16 2011 */
    

Formula

Sum_{k=1..n} 1/k^2 = sqrt(Sum_{j=1..n} Sum_{i=1..n} 1/(i*j)^2). - Alexander Adamchuk, Oct 26 2004
G.f. for rationals a(n)/A007407(n), n >= 1: polylog(2,x)/(1-x).
a(n) = Numerator of (Pi^2)/6 - Zeta(2,n). - Artur Jasinski, Mar 03 2010