A007406 Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^2.
1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141, 1968329, 239437889, 240505109, 40799043101, 40931552621, 205234915681, 822968714749, 238357395880861, 238820721143261, 86364397717734821, 17299975731542641, 353562301485889, 354019312583809, 187497409728228241
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1152 (terms 1..200 from T. D. Noe)
- Stephen Crowley, Two New Zeta Constants: Fractal String, Continued Fraction, and Hypergeometric Aspects of the Riemann Zeta Function, arXiv:1207.1126 [math.NT], 2012.
- Romeo Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), 10.6.7, Section 4.3.2.
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
- Eric Weisstein's World of Mathematics, Wolstenholme Number
Crossrefs
Programs
-
Haskell
import Data.Ratio ((%), numerator) a007406 n = a007406_list !! (n-1) a007406_list = map numerator $ scanl1 (+) $ map (1 %) $ tail a000290_list -- Reinhard Zumkeller, Jul 06 2012
-
Magma
[Numerator(&+[1/k^2:k in [1..n]]):n in [1..23]]; // Marius A. Burtea, Aug 02 2019
-
Maple
a:= n-> numer(add(1/i^2, i=1..n)): seq(a(n), n=1..24); # Zerinvary Lajos, Mar 28 2007
-
Mathematica
a[n_] := If[ n<1, 0, Numerator[HarmonicNumber[n, 2]]]; Table[a[n], {n, 100}] Numerator[HarmonicNumber[Range[20],2]] (* Harvey P. Dale, Jul 06 2014 *)
-
PARI
{a(n) = if( n<1, 0, numerator( sum( k=1, n, 1 / k^2 ) ) )} /* Michael Somos, Jan 16 2011 */
Formula
Sum_{k=1..n} 1/k^2 = sqrt(Sum_{j=1..n} Sum_{i=1..n} 1/(i*j)^2). - Alexander Adamchuk, Oct 26 2004
G.f. for rationals a(n)/A007407(n), n >= 1: polylog(2,x)/(1-x).
a(n) = Numerator of (Pi^2)/6 - Zeta(2,n). - Artur Jasinski, Mar 03 2010
Comments