A007425 d_3(n), or tau_3(n), the number of ordered factorizations of n as n = r s t.
1, 3, 3, 6, 3, 9, 3, 10, 6, 9, 3, 18, 3, 9, 9, 15, 3, 18, 3, 18, 9, 9, 3, 30, 6, 9, 10, 18, 3, 27, 3, 21, 9, 9, 9, 36, 3, 9, 9, 30, 3, 27, 3, 18, 18, 9, 3, 45, 6, 18, 9, 18, 3, 30, 9, 30, 9, 9, 3, 54, 3, 9, 18, 28, 9, 27, 3, 18, 9, 27, 3, 60, 3, 9, 18, 18, 9, 27, 3, 45, 15, 9, 3, 54, 9, 9, 9, 30, 3
Offset: 1
Examples
a(6) = 9; the divisors of 6 are {1,2,3,6} and the numbers of divisors of these divisors are 1, 2, 2, and 4. Adding them, we get 9 as a result. Also, since 6 is a squarefree number, the formula from Herrero can be used to obtain the result: a(6) = 3^omega(6) = 3^2 = 9. - _Wesley Ivan Hurt_, May 30 2014
References
- M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 239.
- A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. xv.
- Paul J. McCarthy, Introduction to Arithmetical Functions, Springer, 1986.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- R. Eisinga, R. Breitling, and T. Heskes, The exact probability distribution of the rank product statistics for replicated experiments, FEBS Letters, 2013, 587: 677-682, doi:10.1016/j.febslet.2013.01.037
- Karin Cvetko-Vah, Michael Kinyon, Jonathan Leech, and Tomaž Pisanski, Regular Antilattices, arXiv:1911.02858 [math.RA], 2019.
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
- Adolf Piltz, Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6.
- N. J. A. Sloane, Transforms.
- Qingfeng Sun and Deyu Zhang, Sums of the triple divisor function over values of a ternary quadratic form, arXiv:1510.06170 [math.NT], 2015.
- E. C. Titchmarsh, Some problems in the analytic theory of numbers, The Quarterly Journal of Mathematics 1 (1942): 129-152.
- Wikipedia, Adolf Piltz.
Crossrefs
Programs
-
Haskell
a007425 = sum . map a000005 . a027750_row -- Reinhard Zumkeller, Feb 16 2012
-
Maple
f:=proc(n) local t1,i,j,k; t1:=0; for i from 1 to n do for j from 1 to n do for k from 1 to n do if i*j*k = n then t1:=t1+1; fi; od: od: od: t1; end; A007425 := proc(n) local e,j; e := ifactors(n)[2]: product(binomial(2+e[j][2],2), j=1..nops(e)); end; # Len Smiley
-
Mathematica
f[n_] := Plus @@ DivisorSigma[0, Divisors[n]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Sep 13 2004 *) SetAttributes[tau, Listable]; tau[1, n_] := 1; tau[k_, n_] := Plus @@ (tau[k-1, Divisors[n]]); Table[tau[3, n], {n, 100}] (* Enrique Pérez Herrero, Nov 08 2009 *) Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 50}] (* Wesley Ivan Hurt, May 30 2014 *) f[p_, e_] := (e+1)*(e+2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 27 2019 *)
-
PARI
for(n=1,100,print1(sumdiv(n,k,numdiv(k)),","))
-
PARI
a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)^3)[n]) \\ Ralf Stephan
-
PARI
a(n)=sumdiv(n, x, sumdiv(x, y, 1 )) \\ Joerg Arndt, Oct 07 2012
-
PARI
a(n)=sumdivmult(n,k,numdiv(k)) \\ Charles R Greathouse IV, Aug 30 2013
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^3)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
-
Python
from math import prod, comb from sympy import factorint def A007425(n): return prod(comb(2+e,2) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024
Formula
a(n) = Sum_{d dividing n} tau(d). - Benoit Cloitre, Apr 04 2002
G.f.: Sum_{k>=1} tau(k)*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
For n = Product p_i^e_i, a(n) = Product_i A000217(e_i + 1). - Lekraj Beedassy, Sep 07 2004
Dirichlet g.f.: zeta^3(s).
From Enrique Pérez Herrero, Nov 03 2009: (Start)
a(n^2) = tau_3(n^2) = tau_2(n^2)*tau_2(n), where tau_2 is A000005 and tau_3 is this sequence.
From Enrique Pérez Herrero, Nov 08 2009: (Start)
a(n) = tau_3(n) = tau_2(n)*tau_2(n*rad(n))/tau_2(rad(n)), where rad(n) is A007947 and tau_2(n) is A000005.
tau_3(n) >= 2*tau_2(n) - 1.
tau_3(n) <= tau_2(n)^2 + tau_2(n)-1. (End)
From Vladimir Shevelev, Dec 22 2017: (Start)
a(n) = sqrt(Sum_{d|n}(tau(d))^3);
a(n) = |Sum_{d|n} A008836(d)*(tau(d))^2|.
The first formula follows from the first Cloitre formula and a Liouville formula; the second formula follows from our analogous formula (cf. our comment in Formula section of A000005). (End)
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(tau(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
Comments