A072254 Numbers n such that triples generated by {2*(n-1),2*n,2*(n+1)} form A007534.
1, 48, 201, 258, 393, 453, 558, 573, 633, 678, 1623, 2103
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(11)=3 because 22 = 3+19 = 5+17 = 11+11.
a129363 n = sum $ map (a164292 . (2*n -)) $ takeWhile (<= n) a001097_list -- Reinhard Zumkeller, Feb 03 2014
nn=1000; tw=Select[Prime[Range[PrimePi[nn]]], PrimeQ[ #+2]&]; tw=Union[tw,tw+2]; tc=Table[0,{nn}]; tc[[tw]]=1; Table[cnt=0; k=1; While[tw[[k]]<=n/2, cnt=cnt+tc[[n-tw[[k]]]]; k++ ]; cnt, {n,2,nn,2}]
The smallest twin prime pair is 3, 5, then 5, 7 so a(1) = 3; the following pair is 11, 13 so a(2) = 5 because 11 - 5 = 6 > 5 - 3 = 2; the following pair is 17, 19: since 17 - 11 = 6 = 11 - 5 nothing happens; the following pair is 29, 31 so a(3)= 17 because 29 - 17 = 12 > 11 - 5 = 6.
NextLowerTwinPrim[n_] := Block[{k = n + 2}, While[ !PrimeQ[k] || !PrimeQ[k + 2], k++ ]; k]; p = 3; r = 0; t = {3}; Do[q = NextLowerTwinPrim[p]; If[q > r + p, AppendTo[t, p]; r = q - p]; p = q, {n, 10^9}] (* Robert G. Wilson v, Oct 22 2005 *)
A266948(n)=my(GP(n,p=2)=forprime(p=p,n,isprime(n*2-p)&&return(p)));for(p=1,3*n,isprime(-2+p=GP(3*n,p))&&return(p))
A266952(n)=my(GP(n, p=2)=forprime(p=p, n+1, isprime(n*2-p)&&return(p))); for(p=1, 3*n, isprime(-2+p=GP(3*n, p))+!p&&(!p||isprime(6*n+2-p))&&return(p))
a(0) = 4208 is the last term of A007534.
The lesser of the twin primes < 200 are 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197 and the greater of the twin primes < 200 are 5, 7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199. 20 is in the current sequence because no combination of any two numbers from each set just enumerated can be summed to make 20.
p = Select[ Range[ 200 ], PrimeQ[ # ] && PrimeQ[ # + 2 ] & ]; q = p + 2; Complement[ Table[ n, {n, 2, 200, 2} ], Union[ Flatten[ Table[ p[ [ i ] ] + q[ [ j ] ], {i, 1, 15}, {j, 1, 15} ] ] ] ]
p = Prime[Range[10000]]; tp = Select[p, PrimeQ[# + 2] || PrimeQ[# - 2] &]; {tn, t} = Transpose[Sort[Tally[Select[Flatten[Table[If[a >= b, a + b, 0], {a, tp}, {b, tp}]], # < tp[[-1]] &]]]]; Join[{Length[Complement[Range[2, tn[[-1]], 2], tn]]}, Table[Count[t, n], {n, 8}]] (* T. D. Noe, May 30 2012 *)
tps=Flatten[Select[Partition[Prime[Range[2000]],2,1], Last[#]-First[#]==2&]]; Complement[Range[1,Last[tps],2], Union[Total[#]+3&/@Tuples[tps,{2}]]] (* Harvey P. Dale, Apr 01 2011 *)
6*3=18, 5,7 twin primes as 11,13, 5+13=7+11=18 so 3 not in the sequence 6*5=30, 11,13 twin primes as 17,19, 13+19=11+17=30 so 5 not in the sequence
Comments