cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000748 Expansion of bracket function.

Original entry on oeis.org

1, -3, 6, -9, 9, 0, -27, 81, -162, 243, -243, 0, 729, -2187, 4374, -6561, 6561, 0, -19683, 59049, -118098, 177147, -177147, 0, 531441, -1594323, 3188646, -4782969, 4782969, 0, -14348907, 43046721, -86093442, 129140163, -129140163, 0, 387420489, -1162261467
Offset: 0

Views

Author

Keywords

Comments

It appears that the sequence coincides with its third-order absolute difference. - John W. Layman, Sep 05 2003
It appears that, for n > 0, the (unsigned) a(n) = 3*|A057682(n)| = 3*|Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j+1)|. - John W. Layman, Sep 05 2003

Examples

			G.f. = 1 - 3*x + 6*x^2 - 9*x^3 + 9*x^4 - 27*x^6 + 81*x^7 - 162*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A307047.
Cf. A057682.

Programs

  • Magma
    I:=[1,-3]; [n le 2 select I[n] else -3*Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 11 2016
  • Maple
    A000748:=(-1-2*z-3*z**2-3*z**3+18*z**5)/(-1+z+9*z**5); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from signs
    a:= n-> (Matrix([[ -3,1], [ -3,0]])^n)[1,1]: seq(a(n), n=0..40); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := 2*3^(n/2)*Sin[(1-5*n)*Pi/6]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 12 2014 *)
    LinearRecurrence[{-3, -3}, {1, -3}, 40] (* Jean-François Alcover, Feb 11 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff(1 / (1 + 3*x + 3*x^2) + x * O(x^n), n))}; /* Michael Somos, Jun 07 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, 3^((n+1)\2) * (-1)^(n\6) * ((-1)^n + (n%3==2)))}; /* Michael Somos, Sep 29 2007 */
    

Formula

G.f.: 1/((1+x)^3-x^3).
a(n) = A007653(3^n).
a(n) = -3*a(n-1) - 3*a(n-2). - Paul Curtz, May 12 2008
a(n) = Sum_{k=1..n} binomial(k,n-k)*(-3)^(k) for n > 0; a(0)=1. - Vladimir Kruchinin, Feb 07 2011
G.f.: 1/(1 + 3*x /(1 - x /(1+x))). - Michael Somos, May 12 2012
G.f.: G(0)/2, where G(k) = 1 + 1/( 1 - 3*x*(2*k+1 + x)/(3*x*(2*k+2 + x) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 09 2014
a(n) = 2*3^(n/2)*sin((1-5*n)*Pi/6). - Jean-François Alcover, Mar 12 2014
a(n) = (-1)^n * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+2,3*k+2). - Seiichi Manyama, Aug 05 2024
a(n) = (i*sqrt(3)/3)*((-3/2 - i*sqrt(3)/2)^(n+1) - (-3/2 + i*sqrt(3)/2)^(n+1)), where i = sqrt(-1). - Taras Goy, Jan 20 2025
a(n) = -2*a(n-1) + 3*a(n-3). - Taras Goy, Jan 26 2025

A130542 The maximum absolute value of the L-series coefficient for an elliptic curve.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 5, 3, 6, 8, 6, 6, 7, 10, 12, 4, 8, 12, 8, 8, 15, 12, 9, 9, 11, 14, 9, 10, 10, 24, 11, 8, 18, 16, 20, 12, 12, 16, 21, 12, 12, 30, 13, 12, 24, 18, 13, 12, 18, 22, 24, 14, 14, 18, 24, 15, 24, 20, 15, 24, 15, 22, 30, 8, 28, 36, 16, 16, 27, 40, 16, 18, 17, 24, 33, 16, 30, 42
Offset: 1

Views

Author

Michael Somos, Jun 04 2007

Keywords

Comments

The values of a(n) and the multiplicativity are conjectural.
Let p be a prime number. By a theorem of Deuring and Waterhouse, for any integer t of absolute value at most floor(2*sqrt(p)), there exists an elliptic curve E having its p-th L-series coefficient as t. This gives the values a(n) for all primes and prime powers n. Multiplicativity of a(n) can be shown by an application of the Chinese remainder theorem for elliptic curves, thus yielding all values of a(n). - Robin Visser, Oct 21 2023

Examples

			For example abs(A007653(n)) <= a(n) for all n where A007653 is the L-series for the curve y^2 - y = x^3 - x.
		

Programs

  • Sage
    def a(n):
        ans, fcts = 1, Integer(n).factor()
        for pp in fcts:
            max_ap = 1
            for ap in range(-floor(2*sqrt(pp[0])), floor(2*sqrt(pp[0]))+1):
                app = [1, ap]
                for i in range(pp[1]-1): app.append(app[1]*app[-1]-pp[0]*app[-2])
                max_ap = max(max_ap, abs(app[-1]))
            ans *= max_ap
        return ans  # Robin Visser, Oct 21 2023

Formula

For primes p : a(p) = floor(2*sqrt(p)) and a(p^2) = floor(2*sqrt(p))^2 - p [Deuring-Waterhouse]. - Robin Visser, Oct 21 2023

A378125 Triangle T(n, k) read by rows. Let m be a nonzero rational number then T(n, m mod (n+1)) is the n-th coefficient in the Hasse-Weil L-series (q^(n+1) in the q-expansion) associated to the elliptic equation -4*x^3 + ((m+1)^2 + 8)*x^2 - 2*(m+3)*x + 1 - y^2 = 0.

Original entry on oeis.org

1, -1, -2, 0, -3, -1, 1, 2, 1, 2, -1, -2, -1, -3, 1, 0, 6, 1, 0, 3, 2, 1, -1, -3, 1, -2, -2, -2, -1, 0, -1, 0, -1, 0, -1, 0, 0, 6, -2, 0, 6, -2, 0, 6, -2, 1, 4, 1, 6, -1, 2, 2, 2, 3, -2, -1, -5, 4, 3, 1, -2, -4, -5, -3, -1, 1, 0, -6, -1, 0, -3, -2, 0, -6, -1, 0, -3, -2, 1, -2, -7, 0, 2, -2, -1, 0, -5, -2, -5, 3, 4, -1, 2, 3, -2, 2, 4, 2, -2, 1, 6, -1, 4, 2, 4
Offset: 0

Views

Author

Thomas Scheuerle, Nov 17 2024

Keywords

Comments

Unfortunately, if m is a fraction m = b/c, this triangle can only be used for those coefficients where c and (n+1) are coprime. This is not only because the modulo operation is undefined otherwise, but also because rows of the triangle where (n+1) divides c contain these coefficients with the wrong sign.
The parametrization model for elliptic equations defined by -4*x^3 + ((m+1)^2 + 8)*x^2 - 2*(m+3)*x + 1 - y^2 is also used in A377441. From its relation to Somos-4 sequences, it is known that there is at least one generator point of infinite order if m is an integer > 0 or < -1. If we assume the Birch and Swinnerton-Dyer conjecture to be true, then we expect the associated L-function L(E, s) to be zero at s = 1 for such m.
The relation of m to the J-invariant is given by J(m) = (m^12 + 12*m^11 + 114*m^10 + 628*m^9 + 2823*m^8 + 8184*m^7 + 19036*m^6 + 24552*m^5 + 25407*m^4 + 16956*m^3 + 9234*m^2 + 2916*m + 729)/(m^5 + 4*m^4 + 23*m^3 + 9*m^2) for rational m.
The row sums of the triangle show some connection to the Dedekind psi function (A001615), but will deviate for at least many nonsquarefree n+1.
A short table which shows the Cremona label which corresponds to the L-series obtained for some rational m:
.
m | label
-------------
-5 655a1
-4 166a1
-3 153a1
-2 58a1
-1 11a3
-1/2 26b1
-1/3 141a1
1 37a1
2 158b1
3 423g1
4 458a1
5 1745b1
.

Examples

			The triangle T(n, k) begins:
  q^(n+1) 0, 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15     sum  A001615
  --------------------------------------------------------------------
  [q^1]   1                                                   1     1
  [q^2]  -1,-2                                               -3     3
  [q^3]   0,-3,-1                                            -4     4
  [q^4]   1, 2, 1, 2                                          6     6
  [q^5]  -1,-2,-1,-3, 1                                       6     6
  [q^6]   0, 6, 1, 0, 3, 2                                   12    12
  [q^7]   1,-1,-3, 1,-2,-2,-2                                -8     8
  [q^8]  -1, 0,-1, 0,-1, 0,-1, 0                             -4    12 <- not equal
  [q^9]   0, 6,-2, 0, 6,-2, 0, 6,-2                          12    12
  [q^10]  1, 4, 1, 6,-1, 2, 2, 2, 3,-2                       18    18
  [q^11] -1,-5, 4, 3, 1,-2,-4,-5,-3,-1, 1                    12    12
  [q^12]  0,-6,-1, 0,-3,-2, 0,-6,-1, 0,-3,-2                -24    24
  [q^13]  1,-2,-7, 0, 2,-2,-1, 0,-5,-2,-5, 3, 4             -14    14
  [q^14] -1, 2, 3,-2, 2, 4, 2,-2, 1, 6,-1, 4, 2, 4           24    24
  [q^15]  0, 6, 1, 0,-3, 1, 0, 3, 3, 0, 3, 2, 0, 9,-1        24    24
  [q^16]  1,-4, 1,-4, 1,-4, 1,-4, 1,-4, 1,-4, 1,-4, 1,-4     24    24
		

Crossrefs

Cf. A006571 (main diagonal), A007653 (column 1).

Programs

  • PARI
    T(n, k) = ellak(ellinit(ellfromeqn(-4*x^3 + ((k+n+2)^2 + 8)*x^2 - 2*(k+n+4)*x + 1 - y^2)),n+1);

Formula

T(n, n) = A006571(n), case m =-1. Also the expansion of (eta(q) * eta(q^11))^2 in powers of q.
T(n, 1) = A007653(n), case m = 1.
T(2*n, n) = A251913(2*n+1), case m = -1/2. See first comment.
Let p be an odd prime with good reduction, then T(p-1, k) is odd iff -4*x^3 + ((k+1)^2 + 8)*x^2 - 2*(k+3)*x + 1 == 0 (mod p) has no solution.
Showing 1-3 of 3 results.