A007955 Product of divisors of n.
1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343
Offset: 1
Examples
Divisors of 10 = [1, 2, 5, 10]. So, a(10) = 2*5*10 = 100. - _Indranil Ghosh_, Mar 22 2017
References
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Wolfdieter Lang, Divisor Product Representation for Natural Numbers.
- M. Le, On Smarandache Divisor Products, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 144-145.
- F. Luca, On the product of divisors of n and sigma(n), J. Ineq. Pure Appl. Math. 4 (2) 2003, Article 46.
- T. D. Noe, The Divisor Product is Unique
- A. Rotkiewicz, On the numbers Phi(a^n +/- b^n), Proc. Amer. Math. Soc. 12 (1961), 419-421.
- Rodica Simon and Frank W. Schmid, Problem E 2946, The American Mathematical Monthly, Vol. 89, No. 5 (1982), p. 333, Ivan Niven, Product of all Positive Divisors of n, solution to problem E 2946, ibid., Vol. 91, No. 10 (1984), p. 650.
- F. Smarandache, Only Problems, Not Solutions!.
- Eric Weisstein's World of Mathematics, Divisor Product.
- Zhu Weiyi, On the divisor product sequences, Smarandache Notions J., Vol. 14 (2004), pp. 144-146.
- OEIS Wiki, Divisorial.
Crossrefs
Programs
-
GAP
List(List([1..50],n->DivisorsInt(n)),Product); # Muniru A Asiru, Feb 17 2019
-
Haskell
a007955 = product . a027750_row -- Reinhard Zumkeller, Feb 06 2012
-
Magma
f := function(n); t1 := &*[d : d in Divisors(n) ]; return t1; end function;
-
Maple
A007955 := proc(n) mul(d,d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 17 2011 seq(isqrt(n^numtheory[tau](n)), n=1..50); # Gary Detlefs, Feb 15 2019
-
Mathematica
Array [ Times @@ Divisors[ # ]&, 100 ] a[n_] := n^(DivisorSigma[0, n]/2); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2013 *)
-
PARI
a(n)=if(issquare(n,&n),n^numdiv(n^2),n^(numdiv(n)/2)) \\ Charles R Greathouse IV, Feb 11 2011
-
Python
from sympy import prod, divisors print([prod(divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Mar 22 2017
-
Python
from math import isqrt from sympy import divisor_count def A007955(n): d = divisor_count(n) return isqrt(n)**d if d % 2 else n**(d//2) # Chai Wah Wu, Jan 05 2022
-
Sage
[prod(divisors(n)) for n in (1..100)] # Giuseppe Coppoletta, Dec 16 2014
-
Sage
[n^(sigma(n,0)/2) for n in (1..49)] # Stefano Spezia, Jul 14 2025
-
Scheme
;; A naive stand-alone implementation: (define (A007955 n) (let loop ((d n) (m 1)) (cond ((zero? d) m) ((zero? (modulo n d)) (loop (- d 1) (* m d))) (else (loop (- d 1) m))))) ;; Faster, if A000005 and A000196 are available: (define (A007955 n) (A000196 (expt n (A000005 n)))) ;; Antti Karttunen, Mar 22 2017
Formula
a(n) = n^(d(n)/2) = n^(A000005(n)/2). Since a(n) = Product_(d|n) d = Product_(d|n) n/d, we have a(n)*a(n) = Product_(d|n) d*(n/d) = Product_(d|n) n = n^(tau(n)), whence a(n) = n^(tau(n)/2).
a(p^k) = p^A000217(k). - Enrique Pérez Herrero, Jul 22 2011
From Antti Karttunen, Mar 22 2017: (Start)
(End)
a(n) = Product_{k=1..n} gcd(n,k)^(1/phi(n/gcd(n,k))) = Product_{k=1..n} (n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021
From Bernard Schott, Jan 11 2022: (Start)
a(n) = n^2 iff n is in A007422.
a(n) = n^3 iff n is in A162947.
a(n) = n^4 iff n is in A111398.
a(n) = n^5 iff n is in A030628.
a(n) = n^(3/2) iff n is in A280076. (End)
From Amiram Eldar, Oct 29 2022: (Start)
a(n) = n * A007956(n).
Sum_{k=1..n} 1/a(k) ~ log(log(n)) + c + O(1/log(n)), where c is a constant (Weiyi, 2004; Sandor and Crstici, 2004). (End)
a(n) = Product_{k=1..n} (n * (1 - ceiling(n/k - floor(n/k))))/k + ceiling(n/k - floor(n/k)). - Adriano Steffler, Feb 08 2024
Comments