A008836 Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).
1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1
Offset: 1
Examples
a(4) = 1 because since bigomega(4) = 2 (the prime divisor 2 is counted twice), then (-1)^2 = 1. a(5) = -1 because 5 is prime and therefore bigomega(5) = 1 and (-1)^1 = -1.
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
- P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Aficionado and Virtuoso Alike, Springer, Berlin, 2008, pp. 1-11.
- H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
- H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
- P. Ribenboim, Algebraic Numbers, p. 44.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 279.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.3.5 on page 99.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 112.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- P. Borwein, R. Ferguson, and M. J. Mossinghoff, Sign changes in sums of the Liouville function, Math. Comp. 77 (2008), 1681-1694.
- Benoit Cloitre, A tauberian approach to RH, arXiv:1107.0812 [math.NT], 2011.
- Michael Coons and Peter Borwein, Transcendence of Power Series for Some Number Theoretic Functions, arXiv:0806.1563 [math.NT], 2008.
- Michael Coons, (Non)Automaticity of number theoretic functions, arXiv:0810.3709 [math.NT], 2008.
- H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409. [Annotated scanned copy]
- R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
- Andrei Vieru, Euler constant as a renormalized value of Riemann zeta function at its pole. Rationals related to Dirichlet L-functions, arXiv:1306.0496 [math.GM], 2015.
- H. Walum, A recurrent pattern in the list of quadratic residues mod a prime and in the values of the Liouville lambda function, J. Numb. Theory 12 (1) (1980) 53-56.
- Eric Weisstein's World of Mathematics, Liouville Function
- Wikipedia, Liouville function
- Index to divisibility sequences
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Haskell
a008836 = (1 -) . (* 2) . a066829 -- Reinhard Zumkeller, Nov 19 2011
-
Maple
A008836 := n -> (-1)^numtheory[bigomega](n); # Peter Luschny, Sep 15 2011 with(numtheory): A008836 := proc(n) local i,it,s; it := ifactors(n): s := (-1)^add(it[2][i][2], i=1..nops(it[2])): RETURN(s) end:
-
Mathematica
Table[LiouvilleLambda[n], {n, 100}] (* Enrique Pérez Herrero, Dec 28 2009 *) Table[If[OddQ[PrimeOmega[n]],-1,1],{n,110}] (* Harvey P. Dale, Sep 10 2014 *)
-
PARI
{a(n) = if( n<1, 0, n=factor(n); (-1)^sum(i=1, matsize(n)[1], n[i,2]))}; /* Michael Somos, Jan 01 2006 */
-
PARI
a(n)=(-1)^bigomega(n) \\ Charles R Greathouse IV, Jan 09 2013
-
Python
from sympy import factorint def A008836(n): return -1 if sum(factorint(n).values()) % 2 else 1 # Chai Wah Wu, May 24 2022
Formula
Dirichlet g.f.: zeta(2s)/zeta(s); Dirichlet inverse of A008966.
Sum_{ d divides n } lambda(d) = 1 if n is a square, otherwise 0.
Completely multiplicative with a(p) = -1, p prime.
a(n) = (-1)^A001222(n) = (-1)^bigomega(n). - Jonathan Vos Post, Apr 16 2006
a(n) = 1 - 2*A066829(n). - Reinhard Zumkeller, Nov 19 2011
a(n) = i^(tau(n^2)-1) where tau(n) is A000005 and i is the imaginary unit. - Anthony Browne, May 11 2016
Recurrence: a(1)=1, n > 1: a(n) = sign(1/2 - Sum_{dMats Granvik, Oct 11 2017
a(1) = 1; a(n) = -Sum_{d|n, d < n} mu(n/d)^2 * a(d). - Ilya Gutkovskiy, Mar 10 2021
a(n) = (-1)^A349905(n). - Antti Karttunen, Apr 26 2022
From Ridouane Oudra, Jun 02 2024: (Start)
a(n) = (-1)^A066829(n);
a(n) = (-1)^A063647(n);
a(n) = sin(tau(n^2)*Pi/2). (End)
Comments