cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009545 Expansion of e.g.f. sin(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216, 33554432
Offset: 0

Views

Author

Keywords

Comments

Also first of the two associated sequences a(n) and b(n) built from a(0)=0 and b(0)=1 with the formulas a(n) = a(n-1) + b(n-1) and b(n) = -a(n-1) + b(n-1). The initial terms of the second sequence b(n) are 1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, ... The points Mn(a(n)+b(n)*I) of the complex plane are located on the spiral logarithmic rho = 2*(1/2)^(2*theta)/Pi) and on the straight lines drawn from the origin with slopes: infinity, 1/2, 0, -1/2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007
A000225: (1, 3, 7, 15, 31, ...) = 2^n - 1 = INVERT transform of A009545 starting (1, 2, 2, 0, -4, -8, ...). (Cf. comments in A144081). - Gary W. Adamson, Sep 10 2008
Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012
The variant 0, 1, -2, 2, 0, -4, 8, -8, 0, 16, -32, 32, 0, -64, (with different signs) is the Lucas U(-2,2) sequence. - R. J. Mathar, Jan 08 2013
(1+i)^n = A146559(n) + a(n)*i where i = sqrt(-1). - Philippe Deléham, Feb 13 2013
This is the Lucas U(2,2) sequence. - Raphie Frank, Nov 28 2015
{A146559, A009545} are the difference analogs of {cos(x),sin(x)} (cf. [Shevelev] link). - Vladimir Shevelev, Jun 08 2017

Crossrefs

Cf. A009116. For minor variants of this sequence see A108520, A084102, A099087.
a(2*n) = A056594(n)*2^n, n >= 1, a(2*n+1) = A057077(n)*2^n.
This is the next term in the sequence A015518, A002605, A000129, A000079, A001477.
Cf. A000225, A144081. - Gary W. Adamson, Sep 10 2008
Cf. A146559.

Programs

  • Magma
    I:=[0,1,2,2]; [n le 4 select I[n] else -4*Self(n-4): n in [1..60]]; // Vincenzo Librandi, Nov 29 2015
    
  • Maple
    t1 := sum(n*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 0 to 50 do printf(`%d, `, coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009
    G(x):=exp(x)*sin(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..50 ); # Zerinvary Lajos, Apr 05 2009
    A009545 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)):
    seq(simplify(A009545(n)), n=0..50); # Peter Luschny, Dec 17 2015
  • Mathematica
    nn=104; Range[0,nn-1]! CoefficientList[Series[Sin[x]Exp[x], {x,0,nn}], x] (* T. D. Noe, May 26 2007 *)
    Join[{a=0,b=1},Table[c=2*b-2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    f[n_] := (1 + I)^(n - 2) + (1 - I)^(n - 2); Array[f, 51, 0] (* Robert G. Wilson v, May 30 2011 *)
    LinearRecurrence[{2,-2},{0,1},110] (* Harvey P. Dale, Oct 13 2011 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x)*sin(x))) /* Joerg Arndt, Apr 24 2011 */
    
  • PARI
    x='x+O('x^100); concat(0, Vec(x/(1-2*x+2*x^2))) \\ Altug Alkan, Dec 04 2015
    
  • Python
    def A009545(n): return ((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # Chai Wah Wu, Feb 16 2024
  • Sage
    [lucas_number1(n,2,2) for n in range(0, 51)] # Zerinvary Lajos, Apr 23 2009
    
  • Sage
    def A146559():
        x, y = 0, -1
        while True:
            yield x
            x, y = x - y, x + y
    a = A146559(); [next(a) for i in range(40)]  # Peter Luschny, Jul 11 2013
    

Formula

a(0)=0; a(1)=1; a(2)=2; a(3)=2; a(n) = -4*a(n-4), n>3. - Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Imaginary part of (1+i)^n. - Marc LeBrun
G.f.: x/(1 - 2*x + 2*x^2).
E.g.f.: sin(x)*exp(x).
a(n) = S(n-1, sqrt(2))*(sqrt(2))^(n-1) with S(n, x)= U(n, x/2) Chebyshev's polynomials of the 2nd kind, Cf. A049310, S(-1, x) := 0.
a(n) = ((1+i)^n - (1-i)^n)/(2*i) = 2*a(n-1) - 2*a(n-2) (with a(0)=0 and a(1)=1). - Henry Bottomley, May 10 2001
a(n) = (1+i)^(n-2) + (1-i)^(n-2). - Benoit Cloitre, Oct 28 2002
a(n) = Sum_{k=0..n-1} (-1)^floor(k/2)*binomial(n-1, k). - Benoit Cloitre, Jan 31 2003
a(n) = 2^(n/2)sin(Pi*n/4). - Paul Barry, Sep 17 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)*(-1)^k. - Paul Barry, Sep 20 2003
a(n+1) = Sum_{k=0..n} 2^k*A109466(n,k). - Philippe Deléham, Nov 13 2006
a(n) = 2*((1/2)^(2*theta(n)/Pi))*cos(theta(n)) where theta(4*p+1) = p*Pi + Pi/2, theta(4*p+2) = p*Pi + Pi/4, theta(4*p+3) = p*Pi - Pi/4, theta(4*p+4) = p*Pi - Pi/2, or a(0)=0, a(1)=1, a(2)=2, a(3)=2, and for n>3 a(n)=-4*a(n-4). Same formulas for the second sequence replacing cosines with sines. For example: a(0) = 0, b(0) = 1; a(1) = 0+1 = 1, b(1) = -0+1 = 1; a(2) = 1+1 = 2, b(2) = -1+1 = 0; a(3) = 2+0 = 2, b(3) = -2+0 = -2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, which implies the sequence is identical to its fourth differences. Binomial transform of 0, 1, 0, -1. - Paul Curtz, Dec 21 2007
Logarithm g.f. arctan(x/(1-x)) = Sum_{n>0} a(n)/n*x^n. - Vladimir Kruchinin, Aug 11 2010
a(n) = A046978(n) * A016116(n). - Paul Curtz, Apr 24 2011
E.g.f.: exp(x) * sin(x) = x + x^2/(G(0)-x); G(k) = 2k + 1 + x - x*(2k+1)/(4k+3+x+x^2*(4k+3)/( (2k+2)*(4k+5) - x^2 - x*(2k+2)*(4k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011
a(n) = Im( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012
G.f.: x*U(0) where U(k) = 1 + x*(k+3) - x*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: x + x^2*W(0), where W(k) = 1 + 1/(1 - x*(k+1)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 2*x)/( x*(4*k+4 - 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n) = (A^n - B^n)/(A - B), where A = 1 + i and B = 1 - i; A and B are solutions of x^2 - 2*x + 2 = 0. - Raphie Frank, Nov 28 2015
a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2) for n >= 2. - Peter Luschny, Dec 17 2015
a(k+m) = a(k)*A146559(m) + a(m)*A146559(k). - Vladimir Shevelev, Jun 08 2017

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
More terms from Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Definition corrected by Joerg Arndt, Apr 24 2011