A009545 Expansion of e.g.f. sin(x)*exp(x).
0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216, 33554432
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..2000, Apr 09 2016 (first 100 terms from T. D. Noe)
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=2, q=-2.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (38) and (45), lhs, m=2.
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- N. J. A. Sloane, Table of n, (I-1)^n for n = 0..100
- Wikipedia, Lucas sequence.
- Index entries for linear recurrences with constant coefficients, signature (2,-2).
- Index entries for sequences related to Chebyshev polynomials
- Index entries for Lucas sequences
Crossrefs
Programs
-
Magma
I:=[0,1,2,2]; [n le 4 select I[n] else -4*Self(n-4): n in [1..60]]; // Vincenzo Librandi, Nov 29 2015
-
Maple
t1 := sum(n*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 0 to 50 do printf(`%d, `, coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009 G(x):=exp(x)*sin(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..50 ); # Zerinvary Lajos, Apr 05 2009 A009545 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)): seq(simplify(A009545(n)), n=0..50); # Peter Luschny, Dec 17 2015
-
Mathematica
nn=104; Range[0,nn-1]! CoefficientList[Series[Sin[x]Exp[x], {x,0,nn}], x] (* T. D. Noe, May 26 2007 *) Join[{a=0,b=1},Table[c=2*b-2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *) f[n_] := (1 + I)^(n - 2) + (1 - I)^(n - 2); Array[f, 51, 0] (* Robert G. Wilson v, May 30 2011 *) LinearRecurrence[{2,-2},{0,1},110] (* Harvey P. Dale, Oct 13 2011 *)
-
PARI
x='x+O('x^66); Vec(serlaplace(exp(x)*sin(x))) /* Joerg Arndt, Apr 24 2011 */
-
PARI
x='x+O('x^100); concat(0, Vec(x/(1-2*x+2*x^2))) \\ Altug Alkan, Dec 04 2015
-
Python
def A009545(n): return ((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # Chai Wah Wu, Feb 16 2024
-
Sage
[lucas_number1(n,2,2) for n in range(0, 51)] # Zerinvary Lajos, Apr 23 2009
-
Sage
def A146559(): x, y = 0, -1 while True: yield x x, y = x - y, x + y a = A146559(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013
Formula
a(0)=0; a(1)=1; a(2)=2; a(3)=2; a(n) = -4*a(n-4), n>3. - Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Imaginary part of (1+i)^n. - Marc LeBrun
G.f.: x/(1 - 2*x + 2*x^2).
E.g.f.: sin(x)*exp(x).
a(n) = S(n-1, sqrt(2))*(sqrt(2))^(n-1) with S(n, x)= U(n, x/2) Chebyshev's polynomials of the 2nd kind, Cf. A049310, S(-1, x) := 0.
a(n) = ((1+i)^n - (1-i)^n)/(2*i) = 2*a(n-1) - 2*a(n-2) (with a(0)=0 and a(1)=1). - Henry Bottomley, May 10 2001
a(n) = (1+i)^(n-2) + (1-i)^(n-2). - Benoit Cloitre, Oct 28 2002
a(n) = Sum_{k=0..n-1} (-1)^floor(k/2)*binomial(n-1, k). - Benoit Cloitre, Jan 31 2003
a(n) = 2^(n/2)sin(Pi*n/4). - Paul Barry, Sep 17 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)*(-1)^k. - Paul Barry, Sep 20 2003
a(n+1) = Sum_{k=0..n} 2^k*A109466(n,k). - Philippe Deléham, Nov 13 2006
a(n) = 2*((1/2)^(2*theta(n)/Pi))*cos(theta(n)) where theta(4*p+1) = p*Pi + Pi/2, theta(4*p+2) = p*Pi + Pi/4, theta(4*p+3) = p*Pi - Pi/4, theta(4*p+4) = p*Pi - Pi/2, or a(0)=0, a(1)=1, a(2)=2, a(3)=2, and for n>3 a(n)=-4*a(n-4). Same formulas for the second sequence replacing cosines with sines. For example: a(0) = 0, b(0) = 1; a(1) = 0+1 = 1, b(1) = -0+1 = 1; a(2) = 1+1 = 2, b(2) = -1+1 = 0; a(3) = 2+0 = 2, b(3) = -2+0 = -2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, which implies the sequence is identical to its fourth differences. Binomial transform of 0, 1, 0, -1. - Paul Curtz, Dec 21 2007
Logarithm g.f. arctan(x/(1-x)) = Sum_{n>0} a(n)/n*x^n. - Vladimir Kruchinin, Aug 11 2010
E.g.f.: exp(x) * sin(x) = x + x^2/(G(0)-x); G(k) = 2k + 1 + x - x*(2k+1)/(4k+3+x+x^2*(4k+3)/( (2k+2)*(4k+5) - x^2 - x*(2k+2)*(4k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011
a(n) = Im( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012
G.f.: x*U(0) where U(k) = 1 + x*(k+3) - x*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: x + x^2*W(0), where W(k) = 1 + 1/(1 - x*(k+1)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 2*x)/( x*(4*k+4 - 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n) = (A^n - B^n)/(A - B), where A = 1 + i and B = 1 - i; A and B are solutions of x^2 - 2*x + 2 = 0. - Raphie Frank, Nov 28 2015
a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2) for n >= 2. - Peter Luschny, Dec 17 2015
Extensions
Extended with signs by Olivier Gérard, Mar 15 1997
More terms from Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Definition corrected by Joerg Arndt, Apr 24 2011
Comments