cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218743 a(n) = (40^n - 1)/39.

Original entry on oeis.org

0, 1, 41, 1641, 65641, 2625641, 105025641, 4201025641, 168041025641, 6721641025641, 268865641025641, 10754625641025641, 430185025641025641, 17207401025641025641, 688296041025641025641, 27531841641025641025641, 1101273665641025641025641, 44050946625641025641025641
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 40 (A009983).

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 41*Self(n-1) - 40*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
  • Mathematica
    LinearRecurrence[{41, -40}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218743(n):=floor(40^n/39)$ makelist(A218743(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=40^n\39
    

Formula

a(n) = floor(40^n/39).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-40*x)).
a(n) = 41*a(n-1) - 40*a(n-2). (End)
E.g.f.: exp(x)*(exp(39*x) - 1)/39. - Elmo R. Oliveira, Aug 29 2024

A100401 Digital root of 3^n.

Original entry on oeis.org

1, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Cino Hilliard, Dec 30 2004

Keywords

Comments

This sequence also gives the digital root of 12^n, 21^n, 30^n, 39^n, 48^n, 57^n, ... (any k^n where k is congruent to 3 mod 9). - Timothy L. Tiffin, Dec 02 2023

Examples

			For n=14, the digits of 3^14 = 4782969 sum to 45, whose digits sum to 9. So, a(14) = 9.
		

Crossrefs

Programs

Formula

a(n) = 3^n mod 18. - Zerinvary Lajos, Nov 25 2009
From Timothy L. Tiffin, Nov 30 2023: (Start)
a(n) = 9 for n >= 2.
G.f.: (1+2x+6x^2)/(1-x).
a(n) = A100403(n) for n <> 1. (End)
a(n) = A010888(A000244(n)). - Michel Marcus, Dec 01 2023
a(n) = A010888(A001021(n)) = A010888(A009965(n)) = A010888(A009974(n)) = A010888(A009983(n)) = A010888(A009992(n)) = A010888(A225374(n)). - Timothy L. Tiffin, Dec 02 2023
E.g.f.: 9*exp(x) - 6*x - 8. - Elmo R. Oliveira, Aug 08 2024
a(n) = A007953(3*a(n-1)) = A010888(3*a(n-1)). - Stefano Spezia, Mar 20 2025

A218742 a(n) = (39^n - 1)/38.

Original entry on oeis.org

0, 1, 40, 1561, 60880, 2374321, 92598520, 3611342281, 140842348960, 5492851609441, 214221212768200, 8354627297959801, 325830464620432240, 12707388120196857361, 495588136687677437080, 19327937330819420046121, 753789555901957381798720, 29397792680176337890150081
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 39 (A009983).

Crossrefs

Programs

Formula

a(n) = floor(39^n/38).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-39*x)).
a(n) = 40*a(n-1) - 39*a(n-2). (End)
E.g.f.: exp(20*x)*sinh(19*x)/19. - Elmo R. Oliveira, Aug 29 2024

A063941 a(n) = 17*39^n.

Original entry on oeis.org

17, 663, 25857, 1008423, 39328497, 1533811383, 59818643937, 2332927113543, 90984157428177, 3548382139698903, 138386903448257217, 5397089234482031463, 210486480144799227057, 8208972725647169855223, 320149936300239624353697, 12485847515709345349794183
Offset: 0

Views

Author

Deborah Florez (deborahf(AT)bcn.net), Sep 01 2001

Keywords

References

  • Mervine Edwards and Siegfried Haenisch, New Views in Algebra, 1: An Integrated Approach, Educational Design, Inc, 1999 (ISBN #0-87694-578-7); p. 9, #16.

Crossrefs

Cf. A009983.

Programs

  • Maple
    for n from 0 to 30 do printf(`%d,`, 17*39^n) od;
  • Mathematica
    NestList[39*# &, 17, 20] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    a(n) = { 17*39^n } \\ Harry J. Smith, Sep 03 2009

Formula

From Philippe Deléham, Nov 24 2008: (Start)
a(n) = 39*a(n-1), n > 0; a(0)=17.
G.f.: 17/(1-39*x).
a(n) = 17*A009983(n). (End)
E.g.f.: 17*exp(39*x). - Elmo R. Oliveira, Jul 09 2025

Extensions

Better description from Brian Galebach, Sep 05 2001
More terms from James Sellers, Sep 25 2001

A165860 Totally multiplicative sequence with a(p) = 39.

Original entry on oeis.org

1, 39, 39, 1521, 39, 1521, 39, 59319, 1521, 1521, 39, 59319, 39, 1521, 1521, 2313441, 39, 59319, 39, 59319, 1521, 1521, 39, 2313441, 1521, 1521, 59319, 59319, 39, 59319, 39, 90224199, 1521, 1521, 1521, 2313441, 39, 1521, 1521, 2313441, 39, 59319, 39
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Programs

  • Mathematica
    39^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 15 2016 *)
  • PARI
    a(n) = 39^bigomega(n); \\ Altug Alkan, Apr 15 2016

Formula

a(n) = A009983(A001222(n)) = 39^bigomega(n) = 39^A001222(n).
Showing 1-5 of 5 results.