cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A248250 Egyptian fraction representation of sqrt(22) (A010478) using a greedy function.

Original entry on oeis.org

4, 2, 6, 43, 2028, 5477762, 40063230724280, 10039617492048087897098971783, 598943577818423089223821862011302605314284839297545338532, 451273778419286656581820003198742640276389207705020449590295850757882195737121214614786626350432663721793231915121
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 22]]

A010126 Continued fraction for sqrt(22).

Original entry on oeis.org

4, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			4.690415759823429554565630113... = 4 + 1/(1 + 1/(2 + 1/(4 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A041034/A041035 (convergents), A248250 (Egyptian fraction), A010478 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[22],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{4},120,{8,1,2,4,2,1}] (* Harvey P. Dale, Jul 02 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(22)); for (n=0, 20000, write("b010126.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 4, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 1/3^(s-1)). (End)
G.f.: (4 + x + 2*x^2 + 4*x^3 + 2*x^4 + x^5 + 4*x^6)/(1 - x^6). - Stefano Spezia, Jul 26 2025

A041034 Numerators of continued fraction convergents to sqrt(22).

Original entry on oeis.org

4, 5, 14, 61, 136, 197, 1712, 1909, 5530, 24029, 53588, 77617, 674524, 752141, 2178806, 9467365, 21113536, 30580901, 265760744, 296341645, 858444034, 3730117781, 8318679596, 12048797377, 104709058612
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[22],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    CoefficientList[Series[- (x^11 - 4 x^10 + 5 x^9 - 14 x^8 + 61 x^7 - 136 x^6 - 197 x^5 - 136 x^4 - 61 x^3 - 14 x^2 - 5 x - 4)/(x^12 - 394 x^6 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    LinearRecurrence[{0,0,0,0,0,394,0,0,0,0,0,-1},{4,5,14,61,136,197,1712,1909,5530,24029,53588,77617},30] (* Harvey P. Dale, Mar 14 2017 *)

Formula

a(n) = 394*a(n-6)-a(n-12). G.f.: -(x^11 -4*x^10 +5*x^9 -14*x^8 +61*x^7 -136*x^6 -197*x^5 -136*x^4 -61*x^3 -14*x^2 -5*x -4)/(x^12-394*x^6+1). [Colin Barker, Jul 16 2012]

A041035 Denominators of continued fraction convergents to sqrt(22).

Original entry on oeis.org

1, 1, 3, 13, 29, 42, 365, 407, 1179, 5123, 11425, 16548, 143809, 160357, 464523, 2018449, 4501421, 6519870, 56660381, 63180251, 183020883, 795263783, 1773548449, 2568812232, 22324046305, 24892858537
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[22],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    LinearRecurrence[{0,0,0,0,0,394,0,0,0,0,0,-1 }, {1, 1, 3, 13, 29, 42, 365, 407, 1179, 5123, 11425, 16548}, 50] (* Stefano Spezia, Sep 30 2018 *)
    CoefficientList[Series[-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x- 1)/(x^12 - 394*x^6 + 1), {x, 0, 50}], x] (* Stefano Spezia, Sep 30 2018 *)
  • PARI
    vector(26, i, contfracpnqn(contfrac(sqrt(22), i))[2,1]) \\ Arkadiusz Wesolowski, Sep 29 2018
    
  • PARI
    Vec(-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1) + O(x^50)) \\ Stefano Spezia, Sep 30 2018

Formula

From Colin Barker, Jul 16 2012: (Start)
a(n) = 394*a(n-6) - a(n-12).
G.f.: -(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1). (End)

A020779 Decimal expansion of 1/sqrt(22).

Original entry on oeis.org

2, 1, 3, 2, 0, 0, 7, 1, 6, 3, 5, 5, 6, 1, 0, 4, 3, 4, 2, 9, 8, 4, 3, 7, 7, 3, 2, 4, 3, 3, 8, 3, 9, 3, 7, 6, 3, 9, 0, 3, 7, 4, 0, 1, 6, 0, 6, 4, 1, 6, 9, 8, 7, 0, 6, 1, 8, 4, 4, 0, 9, 9, 5, 0, 4, 6, 2, 2, 8, 3, 9, 2, 3, 9, 7, 8, 7, 4, 5, 3, 2, 7, 9, 4, 6, 4, 1, 6, 1, 8, 0, 0, 2, 7, 9, 7, 4, 1, 5
Offset: 0

Views

Author

Keywords

Examples

			0.21320071635561043429843773243383937...
		

Crossrefs

Cf. A010478 (reciprocal).

Programs

A377276 Decimal expansion of the circumradius of a truncated tetrahedron with unit edge length.

Original entry on oeis.org

1, 1, 7, 2, 6, 0, 3, 9, 3, 9, 9, 5, 5, 8, 5, 7, 3, 8, 8, 6, 4, 1, 4, 0, 7, 5, 2, 8, 3, 8, 6, 1, 1, 6, 5, 7, 0, 1, 4, 7, 0, 5, 7, 0, 8, 8, 3, 5, 2, 9, 3, 4, 2, 8, 8, 4, 0, 1, 4, 2, 5, 4, 7, 2, 7, 5, 4, 2, 5, 6, 1, 5, 8, 1, 8, 8, 3, 0, 9, 9, 3, 0, 3, 7, 0, 5, 2, 8, 8, 9
Offset: 1

Views

Author

Paolo Xausa, Oct 23 2024

Keywords

Examples

			1.17260393995585738864140752838611657014705708835...
		

Crossrefs

Cf. A377274 (surface area), A377275 (volume), A093577 (midradius), A377277 (Dehn invariant).
Cf. A187110 (analogous for a regular tetrahedron).
Cf. A010478.

Programs

  • Mathematica
    First[RealDigits[Sqrt[22]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedTetrahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(22)/4 = A010478/4.

A017970 Powers of sqrt(22) rounded down.

Original entry on oeis.org

1, 4, 22, 103, 484, 2270, 10648, 49943, 234256, 1098758, 5153632, 24172676, 113379904, 531798888, 2494357888, 11699575548, 54875873536, 257390662067, 1207269217792, 5662594565481, 26559922791424
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010478 (sqrt(22)).

Programs

Formula

a(n) = floor(sqrt(22^n)). - Vincenzo Librandi, Jun 24 2011
Showing 1-7 of 7 results.