A011973 Irregular triangle read by rows: T(n,k) = binomial(n-k, k), n >= 0, 0 <= k <= floor(n/2); or, coefficients of (one version of) Fibonacci polynomials.
1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 3, 1, 5, 6, 1, 1, 6, 10, 4, 1, 7, 15, 10, 1, 1, 8, 21, 20, 5, 1, 9, 28, 35, 15, 1, 1, 10, 36, 56, 35, 6, 1, 11, 45, 84, 70, 21, 1, 1, 12, 55, 120, 126, 56, 7, 1, 13, 66, 165, 210, 126, 28, 1, 1, 14, 78, 220, 330, 252, 84, 8, 1, 15, 91, 286, 495, 462
Offset: 0
Examples
The first few Fibonacci polynomials (defined here by F(0,x) = 0, F(1,x) = 1; F(n+1, x) = F(n, x) + x*F(n-1, x)) are: 0: 0 1: 1 2: 1 3: 1 + x 4: 1 + 2*x 5: 1 + 3*x + x^2 6: (1 + x)*(1 + 3*x) 7: 1 + 5*x + 6*x^2 + x^3 8: (1 + 2*x)*(1 + 4*x + 2*x^2) 9: (1 + x)*(1 + 6*x + 9*x^2 + x^3) 10: (1 + 3*x + x^2 )*(1 + 5*x + 5*x^2) 11: 1 + 9*x + 28*x^2 + 35*x^3 + 15*x^4 + x^5 From _Roger L. Bagula_, Feb 20 2009: (Start) 1 1 1 1 1 2 1 3 1 1 4 3 1 5 6 1 1 6 10 4 1 7 15 10 1 1 8 21 20 5 1 9 28 35 15 1 1 10 36 56 35 6 1 11 45 84 70 21 1 1 12 55 120 126 56 7 (End) For n=9 and k=4, T(9,4) = C(5,4) = 5 since there are exactly five size-4 subsets of {1,2,...,8} that contain no consecutive integers, namely, {1,3,5,7}, {1,3,5,8}, {1,3,6,8}, {1,4,6,8}, and {2,4,6,8}. - _Dennis P. Walsh_, Mar 31 2011 When the rows of the triangle are displayed as centered text, the falling diagonal sums are A005314. The first few terms are row1 = 1 = 1; row2 = 1+1 = 2; row3 = 2+1 = 3; row4 = 1+3+1 = 5; row5 = 1+3+4+1 = 9; row6 = 4+6+5+1 = 16; row7 = 1+10+10+6+1 = 28; row8 = 1+5+20+15+7+1 = 49; row9 = 6+15+35+21+8+1 = 86; row10 = 1+21+35+56+28+9+1 = 151. - _John Molokach_, Jul 08 2013 In the example, you can see that the n-th row of Pascal's triangle is given by T(n, 0), T(n+1, 1), ..., T(2n-1, n-1), T(2n, n). - _Daniel Forgues_, Jul 07 2018
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 141ff.
- C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See p. 117.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 182-183.
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- S. Akbari and M. R. Oboudi, On the edge cover polynomial of a graph, European Journal of Combinatorics, 34 (2013), 297-321.
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See p. 2.
- Michael A. Allen and Kenneth Edwards, On Two Families of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.7.1.
- M. Barnabei, F. Bonetti, S. Elizalde, and M. Silimbani, Descent sets on 321-avoiding involutions and hook decompositions of partitions, arXiv preprint arXiv:1401.3011 [math.CO], 2014.
- Paul Barry, On the duals of the Fibonacci and Catalan-Fibonacci polynomials and Motzkin paths, arXiv:2101.10218 [math.CO], 2021.
- J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 91, 145.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Tom Copeland, Addendum to Elliptic Lie Triad
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- Alexandru-Nicolae Dimache, Ghiocel Groza, Marilena Jianu, and Iulian Iancu, Existence and Uniqueness of Solution Represented as Fractional Power Series for the Fractional Advection-Dispersion Equation, Symmetry (2024) Vol. 16, No. 9, Art. No. 1137.
- Robert G. Donnelly, Molly W. Dunkum, Murray L. Huber, and Lee Knupp, Sign-alternating Gibonacci polynomials, arXiv:2012.14993 [math.CO], 2020.
- Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
- Robert G. Donnelly, Molly W. Dunkum, and Rachel McCoy, Olry Terquem's forgotten problem, arXiv:2303.05949 [math.HO], 2023.
- N. Durov, S. Meljanac, A. Samsarov, and Z. Skoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, arXiv preprint arXiv:math/0604096 [math.RT], 2006.
- Larry Ericksen, Primality Testing and Prime Constellations, Šiauliai Mathematical Seminar, Vol. 3 (11), 2008. See p. 72.
- E. J. Farrell, An introduction to matching polynomials, J. Comb. Theory B 27 (1) (1979) 75-86, Table 1.
- J. L. Gross, T. Mansour, T. W. Tucker, and D. G. L. Wang, Root geometry of polynomial sequences I: Type (0, 1), arXiv preprint arXiv:1501.06107 [math.CO], 2015.
- A. Holme, A combinatorial proof of the duality defect conjecture in codimension 2, Discrete Math., 241 (2001), 363-378; see p. 375.
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009.
- Peter Kagey, Ranking and Unranking Restricted Permutations, arXiv:2210.17021 [math.CO], 2022.
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
- Franklin H.J. Kenter, and Jephian C.-H. Lin, On the error of a priori sampling: zero forcing sets and propagation time, arXiv:1709.08740 [math.CO], 2017.
- Jong Hyun Kim, Hadamard products and tilings, JIS 12 (2009) 09.7.4.
- Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1A.
- H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 41.
- C.-K. Lim and K. S. Lam, The characteristic polynomial of ladder graphs and an annihilating uniqueness theorem, Discr. Math., 151 (1996), 161-167.
- Paweł Lorek and Piotr Markowski, Conditional gambler's ruin problem with arbitrary winning and losing probabilities with applications, arXiv:1812.00687 [math.PR], 2018.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.1.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (Table 3).
- P. Olver, The canonical contact form.
- A. Radhakrishnan, L. Solus, and C. Uhler, Counting Markov equivalence classes for DAG models on trees, Discrete Applied Mathematics 244 (2018): 170-185.
- Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, Gapped Binomial Complexities in Sequences, Univ. Liège (Belgium 2023).
- Fernando Szechtman, Closed formulae for certain Fermat-Pell equations, arXiv:2107.02696 [math.NT], 2021. See Table p. 4.
- Dennis Walsh, Notes on subsets of {1,2,...,n} that contain no consecutive integers.
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Eric Weisstein's World of Mathematics, Path Graph
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 26, ex. 12.
- R. Witula and D. Slota, Conjugate sequences in a Fibonacci-Lucas sense and some identities for sums of powers of their elements, Integers: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A08.
- R. Witula and D. Slota, On modified Chebyshev polynomials, J. Math. Anal. Appl., 324 (2006), 321-343.
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
- James J. Y. Zhao, Infinite log-concavity and higher order Turán inequality for Speyer's g-polynomial of uniform matroids, arXiv:2409.08085 [math.CO], 2024. See p. 11.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a011973 n k = a011973_tabf !! n !! k a011973_row n = a011973_tabf !! n a011973_tabf = zipWith (zipWith a007318) a025581_tabl a055087_tabf -- Reinhard Zumkeller, Jul 14 2015
-
Maple
a := proc(n) local k; [ seq(binomial(n-k,k),k=0..floor(n/2)) ]; end; T := proc(n, k): if k<0 or k>floor(n/2) then return(0) fi: binomial(n-k, k) end: seq(seq(T(n,k), k=0..floor(n/2)), n=0..15); # Johannes W. Meijer, Aug 26 2013
-
Mathematica
(* first: sum method *) Table[CoefficientList[Sum[Binomial[n - m + 1, m]*x^m, {m, 0, Floor[(n + 1)/2]}], x], {n, 0, 12}] (* Roger L. Bagula, Feb 20 2009 *) (* second: polynomial recursion method *) Clear[L, p, x, n, m]; L[x, 0] = 1; L[x, 1] = 1 + x; L[x_, n_] := L[x, n - 1] + x*L[x, n - 2]; Table[ExpandAll[L[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[L[x, n]], x], {n, 0, 12}]; Flatten[%] (* Roger L. Bagula, Feb 20 2009 *) (* Center option shows falling diagonals are A224838 *) Column[Table[Binomial[n - m, m], {n, 0, 25}, {m, 0, Floor[n/2]}], Center] (* John Molokach, Jul 26 2013 *) Table[ Select[ CoefficientList[ Fibonacci[n, x], x], Positive] // Reverse, {n, 1, 18} ] // Flatten (* Jean-François Alcover, Oct 21 2013 *) CoefficientList[LinearRecurrence[{1, x}, {1 + x, 1 + 2 x}, {-1, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *) CoefficientList[Table[x^((n - 1)/2) Fibonacci[n, 1/Sqrt[x]], {n, 15}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
-
PARI
{T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k))};
-
Sage
# Prints the table; cf. A145574. for n in (2..20): [Compositions(n, length=m, min_part=2).cardinality() for m in (1..n//2)] # Peter Luschny, Oct 18 2012
Formula
Let F(n, x) be the n-th Fibonacci polynomial in x; the g.f. for F(n, x) is Sum_{n>=0} F(n, x)*y^n = (1 + x*y)/(1 - y - x*y^2). - Paul D. Hanna
T(m, n) = 0 for n != 0 and m <= 1 T(0, 0) = T(1, 0) = 1 T(m, n) = T(m - 1, n) + T(m-2, n-1) for m >= 2 (i.e., like the recurrence for Pascal's triangle A007318, but going up one row as well as left one column for the second summand). E.g., T(7, 2) = 10 = T(6, 2) + T(5, 1) = 6 + 4. - Rob Arthan, Sep 22 2003
G.f. for k-th column: x^(2*k-1)/(1-x)^(k+1).
Identities for the Fibonacci polynomials F(n, x):
F(m+n+1, x) = F(m+1, x)*F(n+1, x) + x*F(m, x)F(n, x).
F(n, x)^2-F(n-1, x)*F(n+1, x) = (-x)^(n-1).
The degree of F(n, x) is floor((n-1)/2) and F(2p, x) = F(p, x) times a polynomial of equal degree which is 1 mod p.
From Roger L. Bagula, Feb 20 2009: (Start)
p(x,n) = Sum_{m=0..floor((n+1)/2)} binomial(n-m+1, m)*x^m;
p(x,n) = p(x, n - 1) + x*p(x, n - 2). (End)
T(n, k) = A102541(2*n+2, 2*k+1) + A102541(2*n+1, 2*k) - A102541(2*n+3, 2*k+1), n >= 0 and 0 <= k <= floor(n/2). - Johannes W. Meijer, Aug 26 2013
G.f.: 1/(1-x-y*x^2) = R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ x*y)*x/((2*k+2+ x*y)*x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
O.g.f. G(x,t) = x/(1-x-tx^2) = x + x^2 + (1+t) x^3 + (1+2t) x^4 + ... has the inverse Ginv(x,t) = -[1+x-sqrt[(1+x)^2 + 4tx^2]]/(2tx) = x - x^2 + (1-t) x^3 + (-1+3t) x^4 + ..., an o.g.f. for the signed Motzkin polynomials of A055151, consistent with A134264 with h_0 = 1, h_1 = -1, h_2 = -t, and h_n = 0 otherwise. - Tom Copeland, Jan 21 2016
O.g.f. H(x,t) = x (1+tx)/ [1-x(1+tx)] = x + (1+t) x^2 + (1+2t) x^3 + ... = -L[Cinv(-tx)/t], where L(x) = x/(1+x) with inverse Linv(x) = x/(1-x) and Cinv(x) = x (1-x) is the inverse of C(x) = (1-sqrt(1-4x))/2, the o.g.f. of the shifted Catalan numbers A000108. Then Hinv(x,t) = -C[t Linv(-x)]/t = [-1 + sqrt(1+4tx/(1+x))]/2t = x - (1+t) x^2 + (1+2t+2t^2) x^3 - (1+3t+6t^2+5t^3) x^4 + ..., which is signed A098474, reverse of A124644. - Tom Copeland, Jan 25 2016
T(n, k) = GegenbauerC(k, (n+1)/2-k, 1). - Peter Luschny, May 10 2016
Comments