cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A161503 a(n) = NextPrime(n^n) - PrevPrime(n^n).

Original entry on oeis.org

2, 6, 6, 16, 14, 6, 46, 20, 52, 104, 54, 28, 44, 80, 72, 92, 172, 20, 142, 34, 110, 134, 130, 98, 106, 78, 174, 306, 26, 132, 54, 258, 116, 78, 50, 90, 448, 66, 214, 302, 140, 352, 466, 246, 670, 594, 396, 20, 244, 228, 640, 546, 462, 354, 1040, 408, 176, 564, 760
Offset: 2

Views

Author

Keywords

Examples

			3 <- 2^2 -> 5; 5 - 3 = 2;
23 <- 3^3 -> 29; 29 - 23 = 6.
		

Crossrefs

Programs

  • Maple
    for n from 2 to 100 do nn := n^n ; printf("%d,",nextprime(nn)-prevprime(nn) ) ; od: # R. J. Mathar, Jun 12 2009
  • Mathematica
    PrimeNext[n_]:=Module[{k},k=n+1;While[ !PrimeQ[k],k++ ];k]; PrimePrev[n_]:=Module[{k}, k=n-1;While[ !PrimeQ[k],k-- ];k]; DeltaY[n_]:=PrimeNext[n]-PrimePrev[n]; lst={};Do[AppendTo[lst,DeltaY[n^n]],{n,2,5!}];lst
    npnn[n_]:=Module[{nn=n^n},NextPrime[nn]-NextPrime[nn,-1]]; Array[npnn,60,2] (* Harvey P. Dale, Dec 07 2013 *)

Formula

a(n) = A074966(n) + A074967(n) = A013633(A000312(n)). - R. J. Mathar, Jun 12 2009

Extensions

Offset changed by R. J. Mathar, Jun 12 2009

A072680 Difference between (least prime >= n) and (largest prime <= n).

Original entry on oeis.org

0, 0, 2, 0, 2, 0, 4, 4, 4, 0, 2, 0, 4, 4, 4, 0, 2, 0, 4, 4, 4, 0, 6, 6, 6, 6, 6, 0, 2, 0, 6, 6, 6, 6, 6, 0, 4, 4, 4, 0, 2, 0, 4, 4, 4, 0, 6, 6, 6, 6, 6, 0, 6, 6, 6, 6, 6, 0, 2, 0, 6, 6, 6, 6, 6, 0, 4, 4, 4, 0, 2, 0, 6, 6, 6, 6, 6, 0, 4, 4, 4, 0, 6, 6, 6, 6, 6, 0, 8, 8, 8, 8, 8, 8, 8, 0, 4, 4, 4, 0, 2, 0, 4, 4, 4
Offset: 2

Views

Author

Reinhard Zumkeller, Jul 01 2002

Keywords

Comments

a(n) = 0 iff n is prime.

Crossrefs

Programs

  • Mathematica
    f[n_]:=If[PrimeQ[n],0,NextPrime[n]-NextPrime[n,-1]];Array[f,110,2] (* Harvey P. Dale, Sep 22 2011 *)
  • MuPAD
    numlib::prevprime(i)*(-1)-nextprime(i)*(-1)$ i = 2..106 // Zerinvary Lajos, Feb 26 2007
    
  • PARI
    A072680(n) = (nextprime(n) - precprime(n)); \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A007918(n) - A007917(n).
a(n) = A057427(n - A007917(n)) * A001223(A049084(A007917(n))).

A060846 Smallest prime > the n-th nontrivial power of a prime.

Original entry on oeis.org

5, 11, 11, 17, 29, 29, 37, 53, 67, 83, 127, 127, 131, 173, 251, 257, 293, 347, 367, 521, 541, 631, 733, 853, 967, 1031, 1361, 1373, 1693, 1861, 2053, 2203, 2203, 2213, 2411, 2819, 3137, 3491, 3727, 4099, 4493, 4919, 5051, 5333, 6247, 6563, 6863, 6899, 7927
Offset: 1

Views

Author

Labos Elemer, May 03 2001

Keywords

Examples

			78125=5^7 is followed by 78137.
		

Crossrefs

Programs

  • Mathematica
    NextPrime[Select[Range[10^4], !PrimeQ[#] && PrimePowerQ[#] &]] (* Amiram Eldar, Oct 04 2024 *)
  • PARI
    ispp(x) = !isprime(x) && isprimepower(x);
    lista(nn) = apply(x->nextprime(x), select(x->ispp(x), [1..nn])); \\ Michel Marcus, Aug 24 2019
    
  • Python
    from sympy import primepi, integer_nthroot, nextprime
    def A060846(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        return nextprime(bisection(f,n,n)) # Chai Wah Wu, Sep 15 2024

Formula

a(n) = nextprime(A025475(n+1)) = A007918(A025475(n+1)) = Min{p| p>A025475(n+1)}. [corrected by Michel Marcus, Aug 24 2019]

A060359 a(n) = (smallest prime > k) - (largest prime < k), where k = lcm(1..n).

Original entry on oeis.org

2, 2, 2, 2, 2, 14, 18, 18, 32, 32, 54, 54, 54, 40, 62, 62, 2, 2, 2, 2, 42, 42, 30, 30, 72, 72, 44, 44, 44, 42, 42, 42, 42, 42, 96, 96, 96, 96, 126, 126, 142, 142, 142, 142, 2, 2, 142, 142, 142, 142, 122, 122, 122, 122, 122, 122, 262, 262, 98, 98
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (m->nextprime(m)-prevprime(m))(ilcm($1..n)):
    seq (a(n), n=3..100);
  • Mathematica
    f[n_]:=Module[{lcmn=LCM@@Range[n]}, NextPrime[lcmn]-NextPrime[lcmn,-1]]; f/@Range[3,70]  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    a(n) = my(lc = lcm([1..n])); nextprime(lc+1) - precprime(lc-1); \\ Michel Marcus, Mar 20 2018

Formula

a(n) = A013633(A003418(n)). - Michel Marcus, Mar 20 2018

A060845 Largest prime < a nontrivial power of a prime.

Original entry on oeis.org

3, 7, 7, 13, 23, 23, 31, 47, 61, 79, 113, 113, 127, 167, 241, 251, 283, 337, 359, 509, 523, 619, 727, 839, 953, 1021, 1327, 1367, 1669, 1847, 2039, 2179, 2179, 2207, 2399, 2803, 3121, 3469, 3719, 4093, 4483, 4909, 5039, 5323, 6229, 6553, 6857, 6883, 7919
Offset: 1

Views

Author

Labos Elemer, May 03 2001

Keywords

Examples

			78125=5^7 follows 78121
		

Crossrefs

Programs

  • Mathematica
    Take[NextPrime[#,-1]&/@Union[Flatten[Table[Prime[p]^n,{n,2,20},{p,25}]]], 50] (* Harvey P. Dale, Mar 26 2012 *)
  • PARI
    { m=1; for (n=1, 1000, m++; while(sigma(m)*eulerphi(m)*(1 - isprime(m)) <= (m - 1)^2, m++); write("b060845.txt", n, " ", precprime(m - 1)); ) } \\ Harry J. Smith, Jul 19 2009
    
  • Python
    from sympy import primepi, integer_nthroot, prevprime
    def A060845(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        return prevprime(bisection(f,n,n)) # Chai Wah Wu, Sep 15 2024

Formula

a(n) = prevprime[A025475(n)] = A007917[A025475(n)] = Max{p| p < A025475(n)}

A060271 Difference between smallest prime following and largest prime preceding 2*(n-th prime).

Original entry on oeis.org

2, 2, 4, 4, 4, 6, 6, 4, 4, 6, 6, 6, 4, 6, 8, 4, 14, 14, 6, 10, 10, 6, 4, 6, 4, 12, 12, 12, 12, 4, 6, 6, 6, 4, 14, 14, 4, 14, 6, 10, 6, 8, 4, 6, 8, 4, 10, 6, 8, 4, 4, 12, 8, 4, 12, 18, 18, 6, 10, 6, 6, 10, 4, 12, 12, 10, 12, 4, 10, 10, 8, 10, 6, 8, 4, 8, 14, 10, 12, 10, 10, 14, 4, 14, 4, 4, 20, 8
Offset: 1

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Examples

			For n = 1: prime(1) = 2, 2*prime(1) = 4 is between 3 and 5, their difference is 2 = a(1).
For n = 6: prime(6) = 13, 2*prime(6) = 26 is between 23 and 29 and their difference is 6 = a(6).
		

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(nextprime(2*ithprime(j))-prevprime(2*ithprime(j)),j=1...256)];
  • Mathematica
    dsplp[n_]:=Module[{np=2Prime[n]},NextPrime[np]-NextPrime[np,-1]]; Array[ dsplp,90] (* Harvey P. Dale, Mar 20 2013 *)
  • PARI
    a(n) = {my(m = 2*prime(n)); nextprime(m+1) - precprime(m-1);} \\ Amiram Eldar, Feb 08 2025

Extensions

Offset changed to 1 and a(1) prepended by Amiram Eldar, Feb 08 2025

A060847 Difference between a nontrivial prime power (A246547) and the previous prime.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 1, 2, 3, 2, 8, 12, 1, 2, 2, 5, 6, 6, 2, 3, 6, 6, 2, 2, 8, 3, 4, 2, 12, 2, 9, 8, 18, 2, 2, 6, 4, 12, 2, 3, 6, 4, 2, 6, 12, 8, 2, 6, 2, 1, 6, 8, 2, 2, 14, 4, 6, 2, 6, 2, 3, 20, 2, 12, 2, 2, 8, 14, 10, 18, 8, 6, 2, 2, 2, 12, 12, 19, 2, 6, 6, 20, 2, 2, 2, 8, 8, 2, 2, 8, 20, 12, 15, 2, 4
Offset: 1

Views

Author

Labos Elemer, May 03 2001

Keywords

Comments

a(n)=1 only for some powers of 2.

Examples

			78125=5^7 follows 78121, the difference is 4.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to consider prime powers <= N
    P:= select(isprime,[2,seq(i,i=3..floor(sqrt(N)),2)]):
    PP:= sort([seq(seq(p^k,k=2..ilog[p](N)),p=P)]):
    map(t -> t - prevprime(t), PP); # Robert Israel, Nov 13 2024
  • Python
    from sympy import primepi, integer_nthroot, prevprime
    def A060847(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return (a:=bisection(f,n,n))-prevprime(a) # Chai Wah Wu, Sep 13 2024

Formula

a(n) = A246547(n)-prevprime(A246547(n)) = A246547(n)-A049711(A246547(n)).

A060849 Difference between 2 consecutive primes between which a nontrivial power of prime is found.

Original entry on oeis.org

2, 4, 4, 4, 6, 6, 6, 6, 6, 4, 14, 14, 4, 6, 10, 6, 10, 10, 8, 12, 18, 12, 6, 14, 14, 10, 34, 6, 24, 14, 14, 24, 24, 6, 12, 16, 16, 22, 8, 6, 10, 10, 12, 10, 18, 10, 6, 16, 8, 18, 10, 18, 6, 20, 20, 34, 18, 14, 10, 12, 30, 24, 8, 16, 14, 6, 36, 20, 12, 28, 12, 10, 12, 14, 20, 22, 22
Offset: 1

Views

Author

Labos Elemer, May 03 2001

Keywords

Examples

			59049=3^10 is between 59029 and 59051, so the corresponding term is 59051-59029=22.
		

Crossrefs

Programs

  • PARI
    ispp(n) = isprimepower(n) >= 2; \\ A246547
    lista(nn) = {for (n=1, nn, if (ispp(n), print1(nextprime(n) - precprime(n), ", ")););} \\ Michel Marcus, Mar 23 2020

Formula

a(n) = nextprime(A246547(n)) - prevprime(A246547(n)) = A013633(A246547(n)). [corrected by Michel Marcus, Mar 23 2020]

A182487 Nextprime(F(n)) - prevprime(F(n)), where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

3, 4, 4, 6, 4, 6, 6, 14, 10, 10, 6, 6, 8, 18, 12, 24, 16, 10, 6, 12, 30, 12, 24, 42, 30, 24, 60, 24, 30, 34, 30, 36, 46, 12, 36, 18, 34, 24, 24, 30, 36, 52, 72, 16, 22, 48, 44, 50, 34, 20, 20, 28, 44, 50, 40, 92, 60, 86, 16, 52, 48, 66, 46, 168, 50, 174, 36
Offset: 4

Views

Author

Alex Ratushnyak, May 02 2012

Keywords

Comments

Smallest prime following Fibonacci(n) minus largest prime immediately preceding Fibonacci(n). Starting from Fibonacci(4), because for n<4 there is no prime preceding Fibonacci(n).

Examples

			a(0) = A014208(4) - A180422(0) = 5 - 2 = 3,
a(7) = A014208(11) - A180422(7) = 97-83 = 14.
		

Crossrefs

Cf. A079677 (distance from F(n) to the nearest prime).

Programs

  • Maple
    a:= n-> (f-> nextprime(f)-prevprime(f))(combinat[fibonacci](n)):
    seq(a(n), n=4..100);  # Alois P. Heinz, Jul 29 2015
  • Mathematica
    Table[f = Fibonacci[n]; NextPrime[f] - NextPrime[f, -1], {n, 4, 100}] (* T. D. Noe, May 02 2012 *)

Formula

a(n) = A014208(n+4) - A180422(n).
Showing 1-9 of 9 results.