A002454
Central factorial numbers: a(n) = 4^n * (n!)^2.
Original entry on oeis.org
1, 4, 64, 2304, 147456, 14745600, 2123366400, 416179814400, 106542032486400, 34519618525593600, 13807847410237440000, 6682998146554920960000, 3849406932415634472960000, 2602199086312968903720960000, 2040124083669367620517232640000, 1836111675302430858465509376000000
Offset: 0
- Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013 (20.1).
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
- E. L. Ince, Ordinary Differential Equations, Dover, NY, 1956; see p. 173.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 49 and 52, equations 49:6:1 and 52:6:2 at pages 483, 513.
- T. D. Noe, Table of n, a(n) for n = 0..50
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 7.
- Han Wang and Zhi-Wei Sun, Proof of a conjecture involving derangements and roots of unity, arXiv:2206.02589 [math.CO], 2022.
- Index to divisibility sequences.
- Index entries for sequences related to factorial numbers.
A002474
Denominators of coefficients of odd powers of x of the expansion of Bessel function J_1(x).
Original entry on oeis.org
2, 16, 384, 18432, 1474560, 176947200, 29727129600, 6658877030400, 1917756584755200, 690392370511872000, 303772643025223680000, 160391955517318103040000, 100084580242806496296960000, 72861574416763129304186880000, 61203722510081028615516979200000
Offset: 0
a(3) = 18432 = 128*6*24, since J_{1}(x) = x/2 - x^3/16 + x^5/384 - x^7/18432 + ...
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.4.7
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 49 and 52, equations 49:6:2 and 52:6:3 at page 483, 513.
-
[2^(2*n+1)*Factorial(n)*Factorial(n+1): n in [0..30]]; // G. C. Greubel, Sep 21 2024
-
a:= n-> denom(coeff(series(BesselJ(1, x), x, 2*n+2), x, 2*n+1)):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 21 2024
-
CoefficientList[Series[BesselJ[1,x], {x,0,30}], x][[2 ;; ;; 2]]//Denominator
Table[2^(2*n+1)*n!*(n+1)!, {n,0,30}] (* G. C. Greubel, Sep 21 2024 *)
-
a(n) = n!^2 * (n+1) << (2*n+1) \\ Charles R Greathouse IV, Oct 23 2023
-
first(n)=my(x='x+O('x^(2*n+1)),t=besselj(1,x)); vector(n+1,k,2*denominator(polcoeff(t,2*k-2))) \\ Charles R Greathouse IV, Oct 23 2023
-
[2^(2*n+1)*factorial(n)*factorial(n+1) for n in range(31)] # G. C. Greubel, Sep 21 2024
Name specified, numerators given, formula augmented by
Wolfdieter Lang, Aug 25 2015
A002506
Denominators of coefficients of expansion of Bessel function J_2(x).
Original entry on oeis.org
8, 96, 3072, 184320, 17694720, 2477260800, 475634073600, 119859786547200, 38355131695104000, 15188632151261184000, 7290543432605368320000, 4170190843450270679040000, 2802368246798581896314880000
Offset: 0
a(2) = 3072 = 64*2*24, J2(x) = x^2/8 - x^4/96 + x^6/3072 - x^8/184320 +- ...
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.4.7
-
Denominator[Take[CoefficientList[Series[BesselJ[2,x],{x,0,30}],x],{3,-1,2}]] (* Harvey P. Dale, Sep 21 2013 *)
A061403
Denominators in the series for Bessel function J4(x).
Original entry on oeis.org
384, 7680, 368640, 30965760, 3963617280, 713451110400, 171228266496000, 52738306080768000, 20251509535014912000, 9477706462386978816000, 5307515618936708136960000, 3502960308498227370393600000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[4, x], {x, 0, 500}], x], {5, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061404
Denominators in the series for Bessel function J5(x).
Original entry on oeis.org
3840, 92160, 5160960, 495452160, 71345111040, 14269022208000, 3767021862912000, 1265719345938432000, 526539247910387712000, 265375780946835406848000, 159225468568101244108800000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[5, x], {x, 0, 500}], x], {6, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061405
Denominators in the series for Bessel function J6(x).
Original entry on oeis.org
46080, 1290240, 82575360, 8918138880, 1426902220800, 313918488576000, 90408524709888000, 32908702994399232000, 14743098941490855936000, 7961273428405062205440000, 5095214994179239811481600000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[6, x], {x, 0, 500}], x], {7, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061407
Denominators in the series for Bessel function J8(x).
Original entry on oeis.org
10321920, 371589120, 29727129600, 3923981107200, 753404372582400, 195885136871424000, 65817405988798464000, 27643310515295354880000, 14153374983831221698560000, 8661865490104707679518720000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[8, x], {x, 0, 50}], x], {9, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061440
Denominators in the series for Bessel function J9(x).
Original entry on oeis.org
185794560, 7431782400, 653996851200, 94175546572800, 19588513687142400, 5484783832399872000, 1974522179663953920000, 884585936489451356160000, 481214749450261537751040000, 311827157643769476462673920000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[9, x], {x, 0, 50}], x], {10, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061441
Denominators in the series for Bessel function J10(x).
Original entry on oeis.org
3715891200, 163499212800, 15695924428800, 2448564210892800, 548478383239987200, 164543514971996160000, 63184709749246525440000, 30075921840641346109440000, 17323730980209415359037440000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[10, x], {x, 0, 50}], x], {11, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061406
Denominators in the series for Bessel function J7(x).
Original entry on oeis.org
645120, 20643840, 1486356480, 178362777600, 31391848857600, 7534043725824000, 2350621642457088000, 921443683843178496000, 442292968244725678080000, 254760749708961990574080000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[7, x], {x, 0, 50}], x], {8, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
Showing 1-10 of 10 results.
Comments