A002454
Central factorial numbers: a(n) = 4^n * (n!)^2.
Original entry on oeis.org
1, 4, 64, 2304, 147456, 14745600, 2123366400, 416179814400, 106542032486400, 34519618525593600, 13807847410237440000, 6682998146554920960000, 3849406932415634472960000, 2602199086312968903720960000, 2040124083669367620517232640000, 1836111675302430858465509376000000
Offset: 0
- Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013 (20.1).
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
- E. L. Ince, Ordinary Differential Equations, Dover, NY, 1956; see p. 173.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 49 and 52, equations 49:6:1 and 52:6:2 at pages 483, 513.
- T. D. Noe, Table of n, a(n) for n = 0..50
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 7.
- Han Wang and Zhi-Wei Sun, Proof of a conjecture involving derangements and roots of unity, arXiv:2206.02589 [math.CO], 2022.
- Index to divisibility sequences.
- Index entries for sequences related to factorial numbers.
A002506
Denominators of coefficients of expansion of Bessel function J_2(x).
Original entry on oeis.org
8, 96, 3072, 184320, 17694720, 2477260800, 475634073600, 119859786547200, 38355131695104000, 15188632151261184000, 7290543432605368320000, 4170190843450270679040000, 2802368246798581896314880000
Offset: 0
a(2) = 3072 = 64*2*24, J2(x) = x^2/8 - x^4/96 + x^6/3072 - x^8/184320 +- ...
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.4.7
-
Denominator[Take[CoefficientList[Series[BesselJ[2,x],{x,0,30}],x],{3,-1,2}]] (* Harvey P. Dale, Sep 21 2013 *)
A014401
Denominators of coefficients of expansion of Bessel function J_3(x).
Original entry on oeis.org
48, 768, 30720, 2211840, 247726080, 39636172800, 8561413324800, 2397195730944000, 843812897292288000, 364527171630268416000, 189554129247739576320000, 116765343616607579013120000
Offset: 0
a(1) = 768 = 32*24, J3(x) = x^3/48 - x^5/768 + x^7/30720 - x^9/2211840 +- ...
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7
-
k:=3: f:= gfun:-rectoproc({a(n)-(4*n^2 + 4*n*k)*a(n-1), a(0)=2^k*k!}, a(n), remember): map(f, [$0..16]); # Georg Fischer, Mar 22 2022
-
Denominator[Take[CoefficientList[Series[BesselJ[3,x],{x,0,30}],x],{4,-1,2}]] (* Harvey P. Dale, Dec 10 2011 *)
A001900
Successive numerators of Wallis's approximation to Pi/2 (unreduced).
Original entry on oeis.org
1, 2, 4, 16, 64, 384, 2304, 18432, 147456, 1474560, 14745600, 176947200, 2123366400, 29727129600, 416179814400, 6658877030400, 106542032486400, 1917756584755200, 34519618525593600, 690392370511872000, 13807847410237440000, 303772643025223680000
Offset: 0
From _Wolfdieter Lang_, Dec 06 2017: (Start)
Partial products of the rows N (for numerators a(n)) and D (for denominators b(n) = A000246(n+1)) begin:
n: 0 1 2 3 4 5 6 7 8 9 10 ...
N: 1 2 2 4 4 6 6 8 8 10 10 ...
D: 1 1 3 3 5 5 7 7 9 9 11 ...
a(n): 1 2 4 16 64 384 2304 18432 147456 14745601 4745600 ...
b(n): 1 1 3 9 45 225 1575 11025 99225 893025 9823275 ... (End)
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
- Alois P. Heinz, Table of n, a(n) for n = 0..449
- John Derbyshire, Prime Obsession, Plume books, p. 16, 2003.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
- Index to divisibility sequences
-
a[n_] := a[n] = If[n==0, 1, (n+Mod[n, 2]) a[n-1]];
a /@ Range[0, 21] (* Jean-François Alcover, Jan 31 2020 *)
-
a(n)=if(n<0,0,prod(k=1,n,if(k%2,k+1,k)))
A161736
Denominators of the column sums of the BG2 matrix.
Original entry on oeis.org
1, 9, 75, 1225, 19845, 160083, 1288287, 41409225, 1329696225, 10667118605, 85530896451, 1371086188563, 21972535073125, 176021737014375, 1409850293610375, 90324408810638025, 5786075364399106425, 46326420401234675625, 370882277949065911875, 5938020471163465810125
Offset: 2
sb(2) = 2; sb(3) = 16/9; sb(4) = 128/75; sb(5) = 2048/1225; etc..
-
[Denominator((2^(4*n-5)*(Factorial(n-1))^4)/((n-1)*(Factorial(2*n-2))^2)): n in [2..20]]; // G. C. Greubel, Sep 26 2018
-
nmax := 18; for n from 0 to nmax do A001818(n) := (doublefactorial(2*n-1))^2 od: for n from 0 to nmax do A008956(n, 0):=1 od: for n from 0 to nmax do A008956(n, n) := A001818(n) od: for n from 1 to nmax do for m from 1 to n-1 do A008956(n, m) := (2*n-1)^2*A008956(n-1, m-1) + A008956(n-1, m) od: od: for n from 1 to nmax do for m from 0 to n do s(n, m):=0; s(n, m) := s(n, m)+ sum((-1)^k1*A008956(n, n-k1), k1=0..n-m): od: sb1(n+1) := sum(s(n, k1), k1=1..n) * 2/A001818(n); od: seq(sb1(n), n=2..nmax); # End program 1
nmax1 := nmax; for n from 0 to nmax1 do A001147(n):= doublefactorial(2*n-1) od: for n from 0 to nmax1/2 do A133221(2*n+1) := A001147(n); A133221(2*n) := A001147(n) od: for n from 0 to nmax1 do A002474(n) := 2^(2*n+1)*n!*(n+1)! od: for n from 1 to nmax1 do A161738(n) := ((product((2*n-3-2*k1), k1=0..floor(n/2-1)))) od: for n from 2 to nmax1 do sb2(n) := A002474(n-2) / (A161738(n)*A133221(n-1))^2 od: seq(sb2(n), n=2..nmax1); # End program 2
# Above Maple programs edited by Johannes W. Meijer, Sep 25 2012
r := n -> (1/Pi)*(2*n - 2)*((n - 3/2)!/(n - 1)!)^2: a := n -> numer(simplify(r(n))):
seq(a(n), n = 1..21); # Peter Luschny, Feb 12 2025
-
sb[2]=2; sb[n_] := sb[n] = sb[n-1]*4*(n-1)*(n-2)/(2n-3)^2; Table[sb[n] // Denominator, {n, 2, 20}] (* Jean-François Alcover, Aug 14 2017 *)
-
{a(n) = if( n<2, 0, n--; numerator( binomial( 2*n, n)^2 * n / 2^(n+1) ))}; /* Michael Somos, May 09 2011 */
A160481
Row sums of the Beta triangle A160480.
Original entry on oeis.org
-1, -10, -264, -13392, -1111680, -137030400, -23500108800, -5351202662400, -1562069156659200, -568747270103040000, -252681700853514240000, -134539938778433126400000, -84573370199475510312960000, -61972704966344777143418880000, -52361960516341326660973363200000
Offset: 2
-
nmax := 14; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n,m) := (2*n-3)^2*BETA(n-1, m)-(2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: for n from 2 to nmax do s1(n) := 0: for m from 1 to n-1 do s1(n) := s1(n) + BETA(n, m) od: od: seq(s1(n), n=2..nmax);
# End first program
nmax := nmax; A120778 := proc(n): numer(sum(binomial(2*k1, k1)/(k1+1) / 4^k1, k1=0..n)) end proc: A000165 := proc(n): 2^n*n! end proc: A049606 := proc(n): denom(2^n/n!) end proc: for n from 2 to nmax do s2(n) := (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) end do: seq(s2(n), n=2..nmax);
# End second program
-
BETA[2, 1] = -1; BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!; BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1]; BETA[, ] = 0;
Table[Sum[BETA[n, m], {m, 1, n - 1}], {n, 2, 14}] (* Jean-François Alcover, Dec 13 2017 *)
A061403
Denominators in the series for Bessel function J4(x).
Original entry on oeis.org
384, 7680, 368640, 30965760, 3963617280, 713451110400, 171228266496000, 52738306080768000, 20251509535014912000, 9477706462386978816000, 5307515618936708136960000, 3502960308498227370393600000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[4, x], {x, 0, 500}], x], {5, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061404
Denominators in the series for Bessel function J5(x).
Original entry on oeis.org
3840, 92160, 5160960, 495452160, 71345111040, 14269022208000, 3767021862912000, 1265719345938432000, 526539247910387712000, 265375780946835406848000, 159225468568101244108800000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[5, x], {x, 0, 500}], x], {6, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061405
Denominators in the series for Bessel function J6(x).
Original entry on oeis.org
46080, 1290240, 82575360, 8918138880, 1426902220800, 313918488576000, 90408524709888000, 32908702994399232000, 14743098941490855936000, 7961273428405062205440000, 5095214994179239811481600000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[6, x], {x, 0, 500}], x], {7, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
A061407
Denominators in the series for Bessel function J8(x).
Original entry on oeis.org
10321920, 371589120, 29727129600, 3923981107200, 753404372582400, 195885136871424000, 65817405988798464000, 27643310515295354880000, 14153374983831221698560000, 8661865490104707679518720000
Offset: 0
-
Denominator[Take[CoefficientList[Series[BesselJ[8, x], {x, 0, 50}], x], {9, -1, 2}]] (* G. C. Greubel, Aug 15 2017 *)
Showing 1-10 of 13 results.
Comments