A014410 Elements in Pascal's triangle (by row) that are not 1.
2, 3, 3, 4, 6, 4, 5, 10, 10, 5, 6, 15, 20, 15, 6, 7, 21, 35, 35, 21, 7, 8, 28, 56, 70, 56, 28, 8, 9, 36, 84, 126, 126, 84, 36, 9, 10, 45, 120, 210, 252, 210, 120, 45, 10, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 13, 78
Offset: 2
Examples
The triangle T(n,k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 2: 2 3: 3 3 4: 4 6 4 5: 5 10 10 5 6: 6 15 20 15 6 7: 7 21 35 35 21 7 8: 8 28 56 70 56 28 8 9: 9 36 84 126 126 84 36 9 10: 10 45 120 210 252 210 120 45 10 11: 11 55 165 330 462 462 330 165 55 11 12: 12 66 220 495 792 924 792 495 220 66 12 ... reformatted. - _Wolfdieter Lang_, May 22 2015
References
- Victor J. Kac, A History of Mathematics, third edition, Addison-Wesley, 2009, pp. 395, 396.
Links
- Reinhard Zumkeller, Rows n=2..150 of triangle, flattened
- Carl McTague, On the Greatest Common Divisor of binomial(qn, q), binomial(qn,2q), ..., binomial(qn, qn-q), arXiv:1510.06696 [math.CO], 2015.
- Wikipedia, Johannes Scheubel (in German).
- Wikipedia, Simplex
Crossrefs
Programs
-
Haskell
a014410 n k = a014410_tabl !! (n-2) !! (k-1) a014410_row n = a014410_tabl !! (n-2) a014410_tabl = map (init . tail) $ drop 2 a007318_tabl -- Reinhard Zumkeller, Mar 12 2012
-
Maple
for i from 0 to 12 do seq(binomial(i, j)*1^(i-j), j = 1 .. i-1) od; # Zerinvary Lajos, Dec 02 2007
-
Mathematica
Select[ Flatten[ Table[ Binomial[ n, i ], {n, 0, 13}, {i, 0, n} ] ], #>1& ]
Formula
T(n,k) = binomial(n,k) = A007318(n,k), n >= 2, k = 1, 2, ..., n-1.
gcd_{k=1..n-1} T(n, k) = A014963(n), see Theorem 1 of McTague link. - Michel Marcus, Oct 23 2015
Extensions
More terms from Erich Friedman
Comments