A014493 Odd triangular numbers.
1, 3, 15, 21, 45, 55, 91, 105, 153, 171, 231, 253, 325, 351, 435, 465, 561, 595, 703, 741, 861, 903, 1035, 1081, 1225, 1275, 1431, 1485, 1653, 1711, 1891, 1953, 2145, 2211, 2415, 2485, 2701, 2775, 3003, 3081, 3321, 3403, 3655, 3741, 4005, 4095, 4371, 4465, 4753, 4851
Offset: 1
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 68.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- D. H. Lehmer, Recurrence formulas for certain divisor functions, Bull. Amer. Math. Soc., Vol. 49, No. 2 (1943), pp. 150-156.
- Eric Weisstein's World of Mathematics, Triangular Number.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
GAP
List([1..50], n -> (2*n-1)*(2*n-1-(-1)^n)/2); # G. C. Greubel, Feb 09 2019
-
Magma
[(2*n-1)*(2*n-1-(-1)^n)/2: n in [1..50]]; // Vincenzo Librandi, Aug 18 2011
-
Maple
[(2*n-1)*(2*n-1-(-1)^n)/2$n=1..50]; # Muniru A Asiru, Mar 10 2019
-
Mathematica
Select[ Table[n(n + 1)/2, {n, 93}], OddQ[ # ] &] (* Robert G. Wilson v, Nov 05 2004 *) LinearRecurrence[{1,2,-2,-1,1},{1,3,15,21,45},50] (* Harvey P. Dale, Jun 19 2011 *)
-
PARI
a(n)=(2*n-1)*(2*n-1-(-1)^n)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
def A014493(n): return ((n<<1)-1)*(n-(n&1^1)) # Chai Wah Wu, Feb 12 2023
-
Sage
[(2*n-1)*(2*n-1-(-1)^n)/2 for n in (1..50)] # G. C. Greubel, Feb 09 2019
Formula
From Ant King, Nov 17 2010: (Start)
a(n) = (2*n-1)*(2*n - 1 - (-1)^n)/2.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
G.f.: x*(1 + 2*x + 10*x^2 + 2*x^3 + x^4)/((1+x)^2*(1-x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = A193868(n) - 1. - Omar E. Pol, Aug 17 2011
Let S = Sum_{n>=0} x^n/a(n), then S = Q(0) where Q(k) = 1 + x*(4*k+1)/(4*k + 3 - x*(2*k+1)*(4*k+3)^2/(x*(2*k+1)*(4*k+3) + (4*k+5)*(2*k+3)/Q(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 27 2013
E.g.f.: (2*x^2+x+1)*cosh(x)+x*(2*x-1)*sinh(x)-1. - Ilya Gutkovskiy, Apr 24 2016
Sum_{n>=1} 1/a(n) = Pi/2 (A019669). - Robert Bilinski, Jan 20 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2). - Amiram Eldar, Mar 06 2022
Extensions
More terms from Erich Friedman
Comments