A104759
Concatenation of digits of natural numbers from n down to 1.
Original entry on oeis.org
1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 1987654321, 1987654321, 101987654321, 1101987654321, 11101987654321, 211101987654321, 1211101987654321, 31211101987654321, 131211101987654321, 4131211101987654321, 14131211101987654321, 514131211101987654321
Offset: 1
a(11) = a(10) because no number may begin with 0.
a(9)= [123456789]101112131415...=987654321
a(10)=[1234567891]01112131415...=1987654321
a(11)=[12345678910]1112131415...=01987654321=1987654321
a(12)=[123456789101]112131415...=101987654321
a(13)=[1234567891011]12131415...=1101987654321
a(14)=[12345678910111]2131415...=11101987654321
a(15)=[123456789101112]131415...=211101987654321
-
f[n_] := Block[{t = Reverse@ Flatten@ IntegerDigits@ Range@ n, k}, Reap@ For[k = 1, k <= Length@ t, k++, Sow[FromDigits@ Take[t, -k]]] // Flatten // Rest]; f@ 14 (* Michael De Vlieger, Mar 23 2015 *)
lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, 100}]; Table[FromDigits[Reverse[lst[[Range[1, n]]]]], {n, 1, Length[lst]}] (* Robert Price, Mar 24 2015 *)
A272525
Convolution of nonzero repunits (A002275) with themselves.
Original entry on oeis.org
1, 22, 343, 4664, 58985, 713306, 8367627, 96021948, 1083676269, 12071330590, 133058984911, 1454046639232, 15775034293553, 170096021947874, 1824417009602195, 19478737997256516, 207133058984910837, 2194787379972565158, 23182441700960219479, 244170096021947873800
Offset: 0
-
LinearRecurrence[{22, -141, 220, -100}, {1, 22, 343, 4664}, 20]
Table[(9 n (10^(n + 2) + 1) + 7 10^(n + 2) + 29)/729, {n, 0, 19}]
-
A272525(n)=(9*n+7)*(10^(n+2)+1)\729+1 \\ M. F. Hasler, Nov 02 2016
A317824
a(n) = A000422(n)^^A000422(n) (mod 10^len(A000422(n))), where ^^ indicates tetration or hyper-4 (e.g., 3^^4 = 3^(3^(3^3))).
Original entry on oeis.org
1, 21, 721, 8721, 8721, 708721, 5708721, 65708721, 165708721, 65165708721, 1165165708721, 861165165708721, 5861165165708721, 5005861165165708721, 55005861165165708721, 48055005861165165708721, 8448055005861165165708721, 388448055005861165165708721, 49388448055005861165165708721
Offset: 1
For n = 3, a(3) = 321^^321 (mod 10^3) = 721. In fact, a(3) (mod 10^3) == a(4) (mod 10^3), since 721 (mod 10^3) == 8721 (mod 10^3).
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6
-
tmod(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^tmod(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + tmod(b, eulerphi(n))));}
f(n) = my(t=n); forstep(k=n-1, 1, -1, t=t*10^#Str(k)+k); t; \\ A000422
a(n) = my(x=f(n)); tmod(x, 10^#Str(x)); \\ Michel Marcus, Sep 12 2021
A317903
a(n) = A038394(n)^^A038394(n) (mod 10^len(A038394(n))), where ^^ indicates tetration or hyper-4 (e.g., 3^^4=3^(3^(3^3))).
Original entry on oeis.org
4, 76, 176, 4176, 314176, 91314176, 891314176, 80891314176, 88080891314176, 5288080891314176, 705288080891314176, 10705288080891314176, 2410705288080891314176, 912410705288080891314176, 42912410705288080891314176, 9242912410705288080891314176, 989242912410705288080891314176
Offset: 1
For n = 6, a(6) = 13117532^^13117532 (mod 10^8) == 91314176.
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6
-
tmod(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^tmod(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + tmod(b, eulerphi(n))));}
f(n) = fromdigits(concat([digits(p) | p<-Vecrev(primes(n))])); \\ A038394
a(n) = if (n==1, 4, my(x=f(n)); tmod(x, 10^#Str(x))); \\ Michel Marcus, Sep 12 2021
A057138
Add (n mod 10)*10^(n-1) to the previous term, with a(0) = 0.
Original entry on oeis.org
0, 1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 987654321, 10987654321, 210987654321, 3210987654321, 43210987654321, 543210987654321, 6543210987654321, 76543210987654321, 876543210987654321
Offset: 0
Alternative progression for n >= 10 compared with
A000422 and
A014925.
-
ListTools:-PartialSums([seq((k mod 10)*10^(k-1), k=0..40)]); # Robert Israel, Jun 21 2017
-
Join[{c = 0}, Table[c = c + Mod[n, 10]*10^(n - 1), {n, 18}]] (* T. D. Noe, Jan 30 2013 *)
nxt[{n_,a_}]:={n+1,a+Mod[n+1,10]10^n}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Apr 06 2025 *)
-
a(n)=sum(i=0,n,i%10*10^(i-1)) \\ M. F. Hasler, Jan 13 2013
A137233
Number of n-digit even numbers.
Original entry on oeis.org
5, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1
a(2) = 45 because there are 45 2-digit even numbers.
Cf.
A000422,
A002275,
A002276,
A011577,
A014923,
A014925,
A016313,
A019518,
A037487,
A053052,
A057138,
A090843,
A097166,
A099914,
A099915.
A064616
a(n) = (10^n-1)*(91/81)-n*10^n/9.
Original entry on oeis.org
9, 89, 789, 6789, 56789, 456789, 3456789, 23456789, 123456789, 123456789, -9876543211, -209876543211, -3209876543211, -43209876543211, -543209876543211, -6543209876543211, -76543209876543211, -876543209876543211, -9876543209876543211
Offset: 1
-
LinearRecurrence[{21,-120,100},{9,89,789},20] (* Harvey P. Dale, May 15 2022 *)
-
{ a=0; q=1; for (n=1, 150, a+=(10 - n)*q; q*=10; write("b064616.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
-
Vec(x*(100*x-9)/((x-1)*(10*x-1)^2) + O(x^100)) \\ Colin Barker, Sep 15 2014
A052245
Expansion of 10*x / ((1 - x) * (1 - 10*x)^2) in powers of x.
Original entry on oeis.org
0, 10, 210, 3210, 43210, 543210, 6543210, 76543210, 876543210, 9876543210, 109876543210, 1209876543210, 13209876543210, 143209876543210, 1543209876543210, 16543209876543210, 176543209876543210, 1876543209876543210, 19876543209876543210, 209876543209876543210
Offset: 0
-
seq(sum(x*10^x,x=0..a),a=0..100); # Jorge Coveiro, Dec 22 2004
a:=n->sum((10^(n-j)*(n-j)),j=0..n): seq(a(n), n=0..16); # Zerinvary Lajos, Jun 05 2008
-
concat(0, Vec(-10*x/((x-1)*(10*x-1)^2) + O(x^100))) \\ Colin Barker, Sep 13 2014
A371720
a(n) = m^^m mod 10^len(m), where m = A038399(n) and ^^ indicates tetration or hyper-4.
Original entry on oeis.org
1, 11, 811, 3811, 63811, 763811, 3763811, 5103763811, 515103763811, 19515103763811, 6819515103763811, 8146819515103763811, 3808146819515103763811, 7213808146819515103763811, 9807213808146819515103763811, 4939807213808146819515103763811
Offset: 1
a(8) is given by the rightmost 10 digits of 2113853211^^2113853211 and thus a(8) = 5103763811.
a(9) == a(8) (mod 10^10), i.e., the digits of a(9) end with the digits of a(8) (and then a(9) has 2 more preceding).
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441-457.
- Wikipedia, Tetration.
Showing 1-9 of 9 results.
Comments