cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A082540 Number of ordered quadruples (a,b,c,d) with gcd(a,b,c,d)=1 (1 <= {a,b,c,d} <= n).

Original entry on oeis.org

1, 15, 79, 239, 607, 1199, 2303, 3823, 6223, 9279, 13919, 19183, 27007, 35743, 47519, 60735, 78719, 97103, 122447, 148527, 181839, 216959, 262543, 306863, 365343, 423855, 495855, 569055, 661679, 748527, 862047, 972191, 1104831, 1237247
Offset: 1

Views

Author

Benoit Cloitre, May 11 2003

Keywords

Crossrefs

Column k=4 of A344527.
Cf. A015634.

Programs

  • PARI
    a(n)=sum(k=1,n,moebius(k)*floor(n/k)^4)
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082540(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082540(k1)
            j, k1 = j2, n//j2
        return n*(n**3-1)-c+j # Chai Wah Wu, Mar 29 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^4.
a(n) is asymptotic to c*n^4 with c=0.92393....
Lim_{n->infinity} a(n)/n^4 = 1/zeta(4) = A215267 = 90/Pi^4. - Karl-Heinz Hofmann, Apr 11 2021
Lim_{n->infinity} n^4/a(n) = zeta(4) = A013662 = Pi^4/90. - Karl-Heinz Hofmann, Apr 11 2021
a(n) = n^4 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

A015631 Number of ordered triples of integers from [ 1..n ] with no global factor.

Original entry on oeis.org

1, 3, 8, 15, 29, 42, 69, 95, 134, 172, 237, 287, 377, 452, 552, 652, 804, 915, 1104, 1252, 1450, 1635, 1910, 2106, 2416, 2674, 3007, 3301, 3735, 4027, 4522, 4914, 5404, 5844, 6432, 6870, 7572, 8121, 8805, 9389, 10249, 10831, 11776, 12506
Offset: 1

Views

Author

Keywords

Comments

Number of integer-sided triangles with at least two sides <= n and sides relatively prime. - Henry Bottomley, Sep 29 2006

Examples

			a(4) = 15 because the 15 triples in question are in lexicographic order: [1,1,1], [1,1,2], [1,1,3], [1,1,4], [1,2,2], [1,2,3], [1,2,4], [1,3,3], [1,3,4], [1,4,4], [2,2,3], [2,3,3], [2,3,4], [3,3,4] and [3,4,4]. - _Wolfdieter Lang_, Apr 04 2013
The a(4) = 15 triangles with at least two sides <= 4 and sides relatively prime (see _Henry Bottomley_'s comment above) are: [1,1,1], [1,2,2], [2,2,3], [1,3,3], [2,3,3], [2,3,4], [3,3,4], [3,3,5], [1,4,4], [2,4,5], [3,4,4], [3,4,5], [3,4,6], [4,4,5], [4,4,7]. - _Alois P. Heinz_, Feb 14 2020
		

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)+ &+[MoebiusMu(n div d) *d*(d+1)/2:d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Feb 14 2020
    
  • Maple
    with(numtheory):
    b:= proc(n) option remember;
           add(mobius(n/d)*d*(d+1)/2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          b(n) + `if`(n=1, 0, a(n-1))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 09 2011
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[MoebiusMu[n/d]*d*(d+1)/2, {d, Divisors[n]}] + a[n-1]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jan 20 2014, after Maple *)
    Accumulate[Table[Sum[MoebiusMu[n/d]*d*(d + 1)/2, {d, Divisors[n]}], {n, 1, 50}]] (* Vaclav Kotesovec, Jan 31 2019 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+1, 2))); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    a(n) = binomial(n+2, 3)-sum(k=2, n, a(n\k)); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^3)/(1-x)) \\ Seiichi Manyama, Jun 12 2021
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A015631(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A015631(k1)
            j, k1 = j2, n//j2
        return n*(n-1)*(n+4)//6-c+j # Chai Wah Wu, Mar 30 2021
    

Formula

a(n) = (A071778(n)+3*A018805(n)+2)/6. - Vladeta Jovovic, Dec 01 2004
Partial sums of the Moebius transform of the triangular numbers (A007438). - Steve Butler, Apr 18 2006
a(n) = 2*A123324(n) - A046657(n) for n>1. - Henry Bottomley, Sep 29 2006
Row sums of triangle A134543. - Gary W. Adamson, Oct 31 2007
a(n) ~ n^3 / (6*Zeta(3)). - Vaclav Kotesovec, Jan 31 2019
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^3. - Ilya Gutkovskiy, Feb 14 2020
a(n) = n*(n+1)*(n+2)/6 - Sum_{j=2..n} a(floor(n/j)) = A000292(n) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Mar 30 2021

A117108 Moebius transform of tetrahedral numbers.

Original entry on oeis.org

1, 3, 9, 16, 34, 43, 83, 100, 155, 182, 285, 292, 454, 473, 636, 696, 968, 929, 1329, 1304, 1678, 1735, 2299, 2136, 2890, 2818, 3489, 3484, 4494, 4052, 5455, 5168, 6250, 6168, 7652, 6988, 9138, 8547, 10196, 9840, 12340, 10954, 14189, 13140, 15380, 14993, 18423
Offset: 1

Views

Author

Steve Butler, Apr 18 2006

Keywords

Comments

Partial sums of a(n) give A015634(n).
See also A059358, A116963 (applied to shifted version of tetrahedral numbers), inverse Moebius transform of tetrahedral numbers. - Jonathan Vos Post, Apr 20 2006

Examples

			a(2) = 3 because of the triples (1,1,1), (1,1,2), (1,2,2).
		

Crossrefs

Cf. A000292 (tetrahedral numbers), A007438, A008683, A015634 (partial sums), A059358, A116963, A117109, A343544.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*Binomial[# + 2, 3] &]; Array[a, 50] (* Amiram Eldar, Jun 07 2025 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+2, 3)*moebius(n/d)); \\ Michel Marcus, Nov 04 2018

Formula

a(n) = |{(x,y,z) : 1 <= x <= y <= z <= n, gcd(x,y,z,n) = 1}|.
G.f.: Sum_{k>=1} mu(k) * x^k / (1 - x^k)^4. - Ilya Gutkovskiy, Feb 13 2020

Extensions

Offset changed to 1 by Ilya Gutkovskiy, Feb 13 2020

A177976 Square array T(n,k) read by antidiagonals up. Cumulative column sums of A177975.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 15, 13, 5, 1, 1, 12, 29, 29, 19, 6, 1, 1, 18, 42, 63, 49, 26, 7, 1, 1, 22, 69, 106, 118, 76, 34, 8, 1, 1, 28, 95, 189, 225, 201, 111, 43, 9, 1, 1, 32, 134, 289, 434, 427, 320, 155, 53, 10, 1, 1, 42, 172, 444, 729, 888, 748, 484, 209, 64, 11, 1
Offset: 1

Views

Author

Mats Granvik, May 16 2010

Keywords

Comments

Each row is described by both a binomial expression and a closed form polynomial. The closed form polynomials given in A177977 extends this table to the left. For example the 0th column is A002321 and the -1st column is A092149.
Also number of ordered k-tuples of integers from [ 1..n ] with no global factor. - Seiichi Manyama, Jun 12 2021

Examples

			Table begins:
  1..1...1....1.....1.....1......1......1.......1.......1.......1
  1..2...3....4.....5.....6......7......8.......9......10......11
  1..4...8...13....19....26.....34.....43......53......64......76
  1..6..15...29....49....76....111....155.....209.....274.....351
  1.10..29...63...118...201....320....484.....703.....988....1351
  1.12..42..106...225...427....748...1233....1937....2926....4278
  1.18..69..189...434...888...1671...2948....4939....7930...12285
  1.22..95..289...729..1624...3303...6260...11209...19150...31447
  1.28.134..444..1209..2890...6278..12659...24034...43405...75139
  1.32.172..626..1850..4761..11067..23762...47841...91301..166506
  1.42.237..911..2850..7763..19074..43209...91598..183678..351261
  1.46.287.1203..4059.11829..30911..74129..165737..349426..700699
  1.58.377.1657..5878.18016..49474.124516..291706..643355.1347344
  1.64.452.2130..8044.26117..75676.200313..492185.1135761.2483392
  1.72.552.2766.11020.37599.114199.316228..811416.1952182.4443582
  1.80.652.3462.14566.52311.166747.483340.1295295.3248246.7692894
		

Crossrefs

Programs

  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*binomial(d+k-2, d-1))); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    T(n, k) = binomial(n+k-1, k)-sum(j=2, n, T(n\j, k)); \\ Seiichi Manyama, Jun 12 2021

Formula

From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{j=1..n} Sum_{d|j} mu(j/d) * binomial(d+k-2,d-1).
T(n,k) = binomial(n+k-1,k) - Sum_{j=2..n} T(floor(n/j),k). (End)

A015650 Number of ordered 5-tuples of integers from [ 1..n ] with no global factor.

Original entry on oeis.org

1, 5, 19, 49, 118, 225, 434, 729, 1209, 1850, 2850, 4059, 5878, 8044, 11020, 14566, 19410, 24789, 32103, 40213, 50615, 62260, 77209, 93099, 113504, 135431, 162341, 191396, 227355, 264463, 310838, 359322, 417212, 478408, 551944, 626971, 718360, 812311, 922407, 1036667
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=5 of A177976.
Partial sums of A117109.

Programs

  • Mathematica
    a[n_] := Sum[DivisorSum[k, MoebiusMu[k/#]*Binomial[# + 3, 4] &], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 07 2025 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+3, 4))); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    a(n) = binomial(n+4, 5)-sum(k=2, n, a(n\k)); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^5)/(1-x)) \\ Seiichi Manyama, Jun 12 2021
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A015650(n):
        if n == 0:
            return 0
        c, j = n+1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A015650(k1)
            j, k1 = j2, n//j2
        return n*(n+1)*(n+2)*(n+3)*(n+4)//120-c+j # Chai Wah Wu, Apr 18 2021
    

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^5. - Ilya Gutkovskiy, Feb 14 2020
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/120 - Sum_{j=2..n} a(floor(n/j)) = A000389(n+4) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Apr 18 2021
a(n) ~ n^5 / (120*zeta(5)). - Amiram Eldar, Jun 08 2025

A177977 Triangle read by rows. Polynomials based on sums of Moebius transforms.

Original entry on oeis.org

1, 1, 0, 1, 3, -2, 1, 6, 5, -6, 1, 10, 35, 26, -48, 1, 15, 85, 165, -26, -120, 1, 21, 175, 735, 1264, -36, -1440, 1, 28, 322, 1960, 5929, 8092, -1212, -10080, 1, 36, 546, 4536, 22449, 60564, 57644, -24816, -80640, 1, 45, 870, 9450, 63273, 254205, 572480
Offset: 1

Views

Author

Mats Granvik, May 16 2010

Keywords

Comments

These polynomials were found by entering the rows of A177976 in Wolfram Alpha. The lower left half equals part of the Stirling numbers of the first kind given in table A094638. To evaluate, enter a value for n and divide row sums with factorial numbers as shown in the example section. n=-1 gives A092149, n=0 gives the Mertens function A002321, n=1 gives A000012, n=2 gives A002088, n=3 gives A015631, and n=4 gives A015634.

Examples

			Triangle begins and the polynomials are:
(1*n^0)/1
(1*n^1 +0*n^0)/1
(1*n^2 +3*n^1 -2*n^0)/2
(1*n^3 +6*n^2 +5*n^1 -6*n^0)/6
(1*n^4 +10*n^3 +35*n^2 +26*n^1 -48*n^0)/24
(1*n^5 +15*n^4 +85*n^3 +165*n^2 -26*n^1 -120*n^0)/120
(1*n^6 +21*n^5 +175*n^4 +735*n^3 +1264*n^2 -36*n^1 -1440*n^0)/720
		

Extensions

Typo in sequence (erroneous comma) corrected by N. J. A. Sloane, May 22 2010
Showing 1-6 of 6 results.