cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065387 a(n) = sigma(n) + phi(n).

Original entry on oeis.org

2, 4, 6, 9, 10, 14, 14, 19, 19, 22, 22, 32, 26, 30, 32, 39, 34, 45, 38, 50, 44, 46, 46, 68, 51, 54, 58, 68, 58, 80, 62, 79, 68, 70, 72, 103, 74, 78, 80, 106, 82, 108, 86, 104, 102, 94, 94, 140, 99, 113, 104, 122, 106, 138, 112, 144, 116, 118, 118, 184, 122, 126, 140
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

a(n) = 2n for n listed in A008578, the prime numbers at the beginning of the 20th century. When a(n) = a(n + 1), n is probably listed in A066198, numbers n where phi changes as fast as sigma (the only exceptions below 10000 are 2 and 854). - Alonso del Arte, Nov 16 2005
A. Makowski proved that n is prime if and only if a(n) = n * d(n), where d is A000005. - Charles R Greathouse IV, Mar 19 2012
If n is semiprime, a(n) = 2n+1+ceiling(sqrt(n))-floor(sqrt(n)). - Wesley Ivan Hurt, May 05 2015
Atanassov proves that a(n) >= n + A001414(n). - Charles R Greathouse IV, Dec 06 2016
a(n) = 2*n+1 iff n is square of prime (A001248), a(n) = 2*(n+1) iff n is squarefree semiprime (A006881). - Bernard Schott, Feb 09 2020

Examples

			a(10) = 22 because there are 4 coprimes to 10 below 10, the divisors of 10 add up to 18, and 4 + 18 = 22.
		

References

  • K. Atanassov, New integer functions, related to ψ and σ functions. IV., Bull. Number Theory Related Topics 12 (1988), pp. 31-35.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 149.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 162.

Crossrefs

See A292768 for partial sums, A051612 for sigma - phi.

Programs

Formula

a(n) = A000203(n) + A000010(n).
a(n) = A051709(n) + 2n. - N. J. A. Sloane, Jun 12 2004
G.f.: Sum_{k>=1} (mu(k) + 1)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Sep 29 2017

A018894 Numbers k such that sigma(k)/phi(k) sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 1680, 2520, 4620, 9240, 13860, 18480, 27720, 55440, 110880, 120120, 180180, 240240, 360360, 720720, 1441440, 2162160, 3603600, 4084080, 4324320, 6126120, 12252240, 24504480, 36756720, 61261200
Offset: 1

Views

Author

Keywords

Comments

Remarkably similar to but ultimately different from A126098. - Jorg Brown and N. J. A. Sloane, Mar 06 2007
Is a(n+1) <= 2*a(n)? Is a(n) divisible by the primorial p# where p is the largest prime divisor of a(n)? Is a(k) divisible by p# for all k > n + 1? (Cf. A002110.) - David A. Corneth, May 22 2016
From Jud McCranie, Nov 28 2017: (Start)
Yes, a(n+1) <= 2*a(n) -- if m is odd, phi(2*m) = phi(m) and sigma(2*m) = 3*sigma(m).
If m is even then phi(2*m) = 2*phi(m) and sigma(2*m) > 2*sigma(m).
So sigma(2*m)/phi(2*m) > sigma(m)/phi(m). (End)
From David A. Corneth, Sep 10 2020: (Start)
Subsequence of A025487.
Let prime(n)# be the product of the first n primes. Then the LCM of the terms <= 10^40 is 89# * 7# * 5# * (3#)^2 * (2#)^4.
We can assume a larger LCM for terms <= 10^60 namely P# * (13#)^3 * (11#) * (5#) * (3#)^2 * (2#)^4. This gives a total of 466 terms <= 10^75 where P is an arbitrary large prime such that P# <= 10^75.
The LCM of these found terms is a proper divisor and for all primes p <= 13 the exponent is less than the assumed prime. Conjecture: These 466 terms are the terms <= 10^75.
For all 240 terms 1 < t <= 10^40 the following holds: there exists a p|t such that t/p is a term. Conjecture: This holds for all terms t > 1.
Using this technique to find terms I get 6522 terms <= 10^1000 and no conflict with terms found above.
See attached file with terms assuming these conjectures. (End)

Crossrefs

Programs

  • Mathematica
    Flatten@ Function[k, FirstPosition[k, #] & /@ Union@ Rest@ FoldList[Max, 0, k]]@ Array[DivisorSigma[1, #]/EulerPhi@ # &, 10^7] (* Michael De Vlieger, May 27 2016, Version 10 *)
  • PARI
    lista(nn) = {mse = 0; for (n=1, nn, se = sigma(n)/eulerphi(n); if (se > mse, print1(n, ", "); mse = se););} \\ Michel Marcus, Jul 10 2015

Extensions

More terms from Jud McCranie, Nov 09 2001
Initial term added by Arkadiusz Wesolowski, Sep 06 2012

A065385 Numbers m at which value of cototient function (A051953) reaches a new record: cototient(m) > cototient(k) for all k < m.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 102, 108, 114, 120, 126, 132, 138, 144, 150, 168, 180, 198, 204, 210, 240, 252, 264, 270, 294, 300, 330, 360, 378, 390, 420, 450, 462, 480, 504, 510, 540, 546, 570, 600, 630, 660, 690, 714
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

For totient values prime numbers give similar records.

Examples

			a(8) = 30 because for m = 1...29 the cototient values are all smaller than cototient(30) = 22 = A065386(8) and this is the 8th number at which such a record is reached; analogous sequences are A002093, A002182, A015702 or A005250 for functions other than cototient.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[# - EulerPhi@ # &, 10^3]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, May 16 2018 *)
  • PARI
    r=-1; for(n=1,1000,d=n-eulerphi(n); if(r
    				
  • PARI
    { n=0; x=-1; for (m=1, 10^9, c=m - eulerphi(m); if (c > x, x=c; write("b065385.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 17 2009

Formula

a=0; s=0; Do[s=n-EulerPhi[n]; If[s>a, a=s; Print[n]], {n, 1, 10000}]

A065386 Successive record values of the cototient function (A051953).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 16, 22, 24, 30, 32, 36, 44, 46, 48, 54, 60, 66, 70, 72, 78, 88, 90, 92, 94, 96, 110, 120, 132, 138, 140, 162, 176, 180, 184, 198, 210, 220, 250, 264, 270, 294, 324, 330, 342, 352, 360, 382, 396, 402, 426, 440, 486, 500, 514, 522, 528, 550, 588
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Examples

			a(8)=22 because for m = 1...29 the cototient values are all smaller than cototient(30)=22, where 30=A065385(8) and 22 is the 8th term in the sequence of such local records.
		

Crossrefs

Cototient(A065385(n)).
A006093 gives similar records for the totient function. A002093, A002182, A015702, A005250 are analogous sequences for other functions.
a(n) = A051953(A065385(n)).

Programs

  • Mathematica
    a=0; s=0; Do[s = n-EulerPhi[n]; If[s>a, a=s; Print[s]], {n, 1, 10000}]
    (* Second program: *)
    With[{s = Array[# - EulerPhi@ # &, 10^3]}, Union@ FoldList[Max, s]] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    r=-1; for(n=1,1000,d=n-eulerphi(n); if(r
    				
  • PARI
    { n=0; x=-1; for (m=1, 10^9, c=m - eulerphi(m); if (c > x, x=c; write("b065386.txt", n++, " ", c); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 17 2009

A065388 Record values for sigma(m) + phi(m): sum of sigma and totient is larger than for any previous number.

Original entry on oeis.org

2, 4, 6, 9, 10, 14, 19, 22, 32, 39, 45, 50, 68, 80, 103, 106, 108, 140, 144, 184, 219, 248, 258, 284, 316, 392, 451, 528, 594, 624, 672, 808, 816, 915, 948, 955, 1088, 1266, 1440, 1640, 1704, 1824, 1843, 2020, 2031, 2176, 2208, 2610, 3072, 3304, 3512, 3888
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Crossrefs

Programs

  • PARI
    { n=r=0; for (m=1, 10^9, x=sigma(m) + eulerphi(m); if (x > r, r=x; write("b065388.txt", n++, " ", x); if (n==500, return)) ) } \\ Harry J. Smith, Oct 17 2009

Formula

a(n) = sigma(A015702(n)) + phi(A015702(n));
a(n) = A000203(A015702(n)) + A000010(A015702(n)).
a(n) = A065387(A015702(n)). - Amiram Eldar, Mar 22 2025
Showing 1-5 of 5 results.