cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A033984 Odd integers n such that 2^n == 16 (mod n).

Original entry on oeis.org

1, 7, 40369, 673663, 990409, 1697609, 2073127, 6462649, 7527199, 7559479, 14421169, 21484129, 37825753, 57233047, 130647919, 141735559, 179203369, 188967289, 218206489, 259195009, 264538057, 277628449, 330662479, 398321239, 501126487
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

The odd terms of A015924.
For all m, 2^A128121(m)-1 belongs to this sequence.

Crossrefs

Besides initial terms, the sequence coincides with A173138.

Programs

  • Mathematica
    Select[Range[1,510000001,2],PowerMod[2,#,#]==16&] (* Harvey P. Dale, Dec 11 2010 *)

Extensions

Edited and terms 1,7 prepended by Max Alekseyev, Aug 09 2012

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A015926 Positive integers n such that 2^n == 2^6 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 24, 30, 31, 32, 36, 42, 48, 64, 66, 72, 78, 84, 90, 96, 102, 114, 126, 138, 144, 168, 174, 176, 186, 192, 210, 222, 234, 246, 252, 258, 282, 288, 318, 336, 354, 366, 390, 396, 402, 426, 438, 456, 474, 496, 498, 504, 510, 534, 546
Offset: 1

Views

Author

Keywords

Comments

The odd terms are given by A215610.
For all m, 2^A033981(m)-1 belongs to this sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[2^# - 2^6, #] == 0 &] (* T. D. Noe, Aug 17 2012 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011

A015929 Positive integers n such that 2^n == 2^8 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 20, 24, 32, 40, 48, 56, 60, 64, 80, 88, 96, 104, 120, 127, 128, 136, 140, 152, 160, 184, 192, 224, 232, 240, 248, 256, 260, 272, 296, 308, 320, 328, 344, 376, 384, 408, 416, 424, 472, 480
Offset: 1

Views

Author

Keywords

Comments

The odd terms are given by A215611.
For all m, 2^A051447(m)-1 belongs to this sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[2^# - 2^8, #] == 0 &] (* T. D. Noe, Aug 17 2012 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011

A015932 Positive integers n such that 2^n == 2^10 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 10, 12, 16, 24, 28, 30, 32, 34, 48, 50, 64, 70, 73, 96, 110, 112, 128, 130, 150, 170, 190, 192, 230, 256, 290, 310, 330, 370, 384, 410, 430, 442, 448, 470, 512, 530, 532, 550, 590, 610, 670, 710
Offset: 1

Views

Author

Keywords

Comments

The odd terms are given by A215612.
For all m, 2^A033982(m)-1 belongs to this sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[2^# - 2^10, #] == 0 &] (* T. D. Noe, Aug 17 2012 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011

A015937 Positive integers n such that 2^n == 2^12 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 22, 23, 24, 32, 36, 40, 42, 48, 60, 62, 64, 68, 72, 80, 84, 89, 96, 120, 126, 128, 132, 144, 156, 160, 168, 180, 192, 204, 228, 240, 252, 256, 276, 288, 312, 320, 336, 340, 348, 352, 360, 372, 384, 420, 444, 462
Offset: 1

Views

Author

Keywords

Comments

The odd terms are given by A215613.
For all m, 2^A051446(m)-1 belongs to this sequence.

Crossrefs

Programs

  • Mathematica
    With[{c=2^12},Select[Range[1,6000],Divisible[2^#-c,#]&]] (* Harvey P. Dale, Mar 20 2011 *)

Extensions

Edited by Max Alekseyev, Jul 31 2011

A173138 Composite numbers k such that 2^(k-4) == 1 (mod k).

Original entry on oeis.org

4, 40369, 673663, 990409, 1697609, 2073127, 6462649, 7527199, 7559479, 14421169, 21484129, 37825753, 57233047, 130647919, 141735559, 179203369, 188967289, 218206489, 259195009, 264538057, 277628449, 330662479, 398321239, 501126487, 506958313, 612368311, 767983759
Offset: 1

Views

Author

Michel Lagneau, Feb 10 2010

Keywords

Comments

Besides the initial term, the sequence coincides with A033984 and consists of the odd terms > 7 of A015924.

Examples

			4 is a term: 2^(4 - 4) = 1 (mod 4).
		

References

  • A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 100000000 do: a:= 2^(n-4)- 1; b:= a / n; c:= floor(b): if b = c and tau(n) <> 2 then print (n); else fi;od:
  • Mathematica
    Select[Range[500000000],!PrimeQ[#]&&PowerMod[2,#-4,#]==1&] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    is(n)=!isprime(n) && n>1 && Mod(2,n)^(n-4)==1 \\ Charles R Greathouse IV, Nov 23 2011
    
  • Python
    from sympy import isprime, prime, nextprime
    def afind(k=4):
        while True:
            if pow(2, k-4, k) == 1 and not isprime(k): print(k, end=", ")
            k += 1
    afind() # Michael S. Branicky, Mar 21 2022

Extensions

Simplified the definition, added cross-reference to A033984 R. J. Mathar, May 18 2010
More terms from Harvey P. Dale, Nov 23 2011
Typo in a(13) corrected by Georg Fischer, Mar 19 2022
a(24) and beyond from Michael S. Branicky, Mar 21 2022

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A334634 Numbers m that divide 2^m + 11.

Original entry on oeis.org

1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1

Views

Author

Max Alekseyev, Sep 10 2020

Keywords

Comments

Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.

Crossrefs

Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).

Extensions

a(5) from Sergey Paramonov, Oct 10 2021
Showing 1-10 of 10 results.