A016921 a(n) = 6*n + 1.
1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 0
Examples
From _Ilya Gutkovskiy_, Apr 15 2016: (Start) Illustration of initial terms: o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o n=0 n=1 n=2 n=3 (End)
References
- Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kayla Barker, Mia DeStefano, Eugene Fiorini, Michael Gohn, Joe Miller, Jacob Roeder, and Tony W. H. Wong, Generalized Impartial Two-player Pebbling Games on K_3 and C_4, J. Int. Seq. (2024) Vol. 27, Issue 5, Art. No. 24.5.8. See p. 3.
- Tanya Khovanova, Recursive Sequences.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Leo Tavares, Illustration: Hexagonal Lines.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 6*n+1); # G. C. Greubel, Sep 18 2019
-
Haskell
a016921 = (+ 1) . (* 6) a016921_list = [1, 7 ..] -- Reinhard Zumkeller, Jan 15 2013
-
Magma
[6*n+1: n in [0..60]]; // G. C. Greubel, Sep 18 2019
-
Maple
a[1]:=1:for n from 2 to 100 do a[n]:=a[n-1]+6 od: seq(a[n], n=1..56); # Zerinvary Lajos, Mar 16 2008
-
Mathematica
Range[1, 500, 6] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
-
PARI
a(n)=6*n+1 \\ Charles R Greathouse IV, Mar 22 2016
-
Python
for n in range(0,10**5):print(6*n+1) # Soumil Mandal, Apr 14 2016
Formula
a(n) = 6*n + 1, n >= 0 (see the name).
G.f.: (1+5*x)/(1-x)^2.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
a(n) = 4*(3*n-1) - a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (1 + 6*x)*exp(x). - G. C. Greubel, Sep 18 2019
From Leo Tavares, Oct 27 2021: (Start)
a(n) = 6*A001477(n-1) + 7
a(n) = A016933(n) - 1
a(n) = A008588(n) + 1. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/6 + sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021
Comments