cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A017305 a(n) = 10*n + 3.

Original entry on oeis.org

3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 163, 173, 183, 193, 203, 213, 223, 233, 243, 253, 263, 273, 283, 293, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 403, 413, 423, 433, 443, 453, 463, 473, 483, 493, 503, 513, 523, 533
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(38).

Crossrefs

Programs

Formula

a(n) = A017198(n) - A156677(n+2). - Reinhard Zumkeller, Jul 13 2010
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, May 28 2011
G.f.: (3+7*x)/(x-1)^2. - R. J. Mathar, Apr 11 2016
E.g.f.: exp(x)*(3 + 10*x). - Stefano Spezia, Aug 22 2023
a(n) = A016885(2*n). - Elmo R. Oliveira, Apr 10 2025

A017197 a(n) = 9*n + 3.

Original entry on oeis.org

3, 12, 21, 30, 39, 48, 57, 66, 75, 84, 93, 102, 111, 120, 129, 138, 147, 156, 165, 174, 183, 192, 201, 210, 219, 228, 237, 246, 255, 264, 273, 282, 291, 300, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390, 399, 408, 417, 426, 435, 444, 453, 462, 471, 480
Offset: 0

Views

Author

Keywords

Comments

Numbers whose digital root is 3. - Cino Hilliard, Dec 26 2006
a(n)^2 = A017198(n). - Reinhard Zumkeller, Jul 13 2010

Crossrefs

Cf. sequences with general form q*(q*n+1): A016825 (q=2), this sequence (q=3), A119413 (q=4), ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
Cf. A016777.

Programs

  • GAP
    List([0..60], n-> 9*n+3); # G. C. Greubel, Dec 03 2019
  • Haskell
    a017197 = (+ 3) . (* 9)
    a017197_list = [3, 12 ..]  -- Reinhard Zumkeller, Jun 04 2015
    
  • Magma
    [9*n+3: n in [0..60]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    seq(9*n+3, n=0..60); # G. C. Greubel, Dec 03 2019
  • Mathematica
    3*(3*Range[60] -2) (* G. C. Greubel, Dec 03 2019 *)
    LinearRecurrence[{2,-1},{3,12},80] (* or *) NestList[#+9&,3,80] (* Harvey P. Dale, Jan 22 2023 *)
  • PARI
    vector(60, n, 3*(3*n-2) ) \\ G. C. Greubel, Dec 03 2019
    
  • Sage
    [i+3 for i in range(480) if gcd(i,9) == 9] # Zerinvary Lajos, May 20 2009
    

Formula

a(n) = a(n-1) + 9.
a(n) = 3*A016777(n).
a(n) = A092292(n) + A092293(n) + A092296(n).
From Philippe Deléham, Mar 10 2004: (Start)
Sum_{n>=0} (-1)^n / a(n) = (Pi / sqrt(3) + log(2))/9.
G.f.: 3*(1+2*x)/(1-x)^2. (End)
a(n) = 3*(6*n-1) - a(n-1) with a(0)=3. - Vincenzo Librandi, Nov 20 2010
E.g.f.: 3*(1 + 3*x)*exp(x). - G. C. Greubel, Dec 03 2019

Extensions

More terms from Cino Hilliard, Dec 26 2006

A147650 First trisection of A061040.

Original entry on oeis.org

1, 12, 81, 48, 75, 324, 147, 64, 729, 100, 363, 1296, 507, 588, 2025, 768, 289, 2916, 361, 1200, 3969, 1452, 1587, 5184, 1875, 676, 6561, 784, 2523, 8100, 2883, 3072, 9801, 3468, 1225, 11664, 1369, 4332, 13689, 4800, 5043
Offset: 1

Views

Author

Paul Curtz, Nov 09 2008

Keywords

Comments

a(n) gives the denominator of (n-1)*(n+1)/(9*n^2), for n >= 1. The numerator is given by A144454(n). - Wolfdieter Lang, Mar 16 2018

Crossrefs

Cf. A061040, A017198 (2nd trisection), A017234 (3d trisection).

Programs

  • Mathematica
    Table[Which[MemberQ[{1, 8}, Mod[n, 9]], n^2, Mod[n, 3] != 0, 3 n^2, True, 9 n^2], {n, 41}] (* Michael De Vlieger, Mar 16 2018 *)
  • PARI
    a(n) = denominator((n-1)*(n+1)/(9*n^2)); \\ Michel Marcus, Mar 17 2018

Formula

For n >= 1: a(n) = n^2 if n == 1 (mod 9) or == 8 (mod 9). For other n: a(n) = 3*n^2 if n == 1 (mod 3) or == 2 (mod 3), and a(n) = 9*n^2 if n == 0 (mod 3). From the denominator comment above. - Wolfdieter Lang, Mar 16 2018

Extensions

Offset changed from 0 to 1, and extended by Wolfdieter Lang, Mar 16 2018
Showing 1-3 of 3 results.