cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A017497 a(n) = 11*n + 9.

Original entry on oeis.org

9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 119, 130, 141, 152, 163, 174, 185, 196, 207, 218, 229, 240, 251, 262, 273, 284, 295, 306, 317, 328, 339, 350, 361, 372, 383, 394, 405, 416, 427, 438, 449, 460, 471, 482, 493, 504, 515, 526, 537, 548, 559, 570, 581, 592
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: this sequence (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).

Programs

Formula

From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (9+2*x)/(1-x)^2.
E.g.f.: (9+11*x)*exp(x). (End)

A017498 a(n) = (11*n + 9)^2.

Original entry on oeis.org

81, 400, 961, 1764, 2809, 4096, 5625, 7396, 9409, 11664, 14161, 16900, 19881, 23104, 26569, 30276, 34225, 38416, 42849, 47524, 52441, 57600, 63001, 68644, 74529, 80656, 87025, 93636, 100489, 107584, 114921, 122500, 130321, 138384, 146689, 155236, 164025
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), this sequence (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).

Programs

Formula

a(0)=81, a(1)=400, a(2)=961, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 30 2011
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (81 + 157*x +4*x^2)/(1-x)^3.
E.g.f.: (81 + 319*x + 121*x^2)*exp(x). (End)

A017499 a(n) = (11*n + 9)^3.

Original entry on oeis.org

729, 8000, 29791, 74088, 148877, 262144, 421875, 636056, 912673, 1259712, 1685159, 2197000, 2803221, 3511808, 4330747, 5268024, 6331625, 7529536, 8869743, 10360232, 12008989, 13824000, 15813251, 17984728, 20346417, 22906304, 25672375, 28652616, 31855013
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), this sequence (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).

Programs

  • GAP
    List([0..30], n-> (11*n+9)^3); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^3: n in [0..30]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq((11*n+9)^3, n=0..30); # G. C. Greubel, Oct 28 2019
  • Mathematica
    (11 Range[0,30]+9)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{729,8000,29791,74088},30] (* Harvey P. Dale, Feb 13 2018 *)
  • Maxima
    makelist( (11*n+9)^3, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(31, n, (11*n-2)^3) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^3 for n in (0..30)] # G. C. Greubel, Oct 28 2019
    

Formula

From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (729 + 5084*x + 2165*x^2 + 8*x^3)/(1-x)^4.
E.g.f.: (729 + 7271*x + 7260*x^2 + 1331*x^3)*exp(x). (End)

A017500 a(n) = (11*n + 9)^4.

Original entry on oeis.org

6561, 160000, 923521, 3111696, 7890481, 16777216, 31640625, 54700816, 88529281, 136048896, 200533921, 285610000, 395254161, 533794816, 705911761, 916636176, 1171350625, 1475789056, 1836036801, 2258530576, 2750058481, 3317760000, 3969126001, 4711998736
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), this sequence (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).

Programs

Formula

From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (6561 +127195*x +189131*x^2 +28481*x^3 +16*x^4)/(1-x)^5.
E.g.f.: (6561 +153439*x +305041*x^2 +135762*x^3 +14641*x^4)*exp(x). (End)

A017501 a(n) = (11*n + 9)^5.

Original entry on oeis.org

59049, 3200000, 28629151, 130691232, 418195493, 1073741824, 2373046875, 4704270176, 8587340257, 14693280768, 23863536599, 37129300000, 55730836701, 81136812032, 115063617043, 159494694624
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), this sequence (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A000584.

Programs

  • GAP
    List([0..20], n-> (11*n+9)^5); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^5: n in [0..20]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq((11*n+9)^5, n=0..20); # G. C. Greubel, Oct 28 2019
  • Mathematica
    (11*Range[0,20]+9)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {59049,3200000,28629151,130691232,418195493,1073741824},20] (* Harvey P. Dale, Jan 25 2013 *)
  • PARI
    vector(21, n, (11*n-2)^5) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^5 for n in (0..20)] # G. C. Greubel, Oct 28 2019
    

Formula

a(0)=59049, a(1)=3200000, a(2)=28629151, a(3)=130691232, a(4)=418195493, a(5)=1073741824, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Jan 25 2013
G.f.: (59049 + 2845706*x + 10314886*x^2 + 5735346*x^3 + 371101*x^4 + 32*x^5) / (1-x)^6. - Harvey P. Dale, Jan 25 2013
E.g.f.: (59049 + 3140951*x + 11144100*x^2 + 9057455*x^3 + 2269355*x^4 + 161051*x^5)*exp(x). - G. C. Greubel, Oct 28 2019

A017502 a(n) = (11*n + 9)^6.

Original entry on oeis.org

531441, 64000000, 887503681, 5489031744, 22164361129, 68719476736, 177978515625, 404567235136, 832972004929, 1586874322944, 2839760855281, 4826809000000, 7858047974841, 12332795428864, 18755369578009
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), this sequence (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A001014.

Programs

  • GAP
    List([0..20], n-> (11*n+9)^6); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^6: n in [0..20]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq((11*n+9)^6, n=0..20); # G. C. Greubel, Oct 28 2019
  • Mathematica
    (11Range[0,20]+9)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {531441,64000000,887503681,5489031744,22164361129,68719476736, 177978515625}, 20] (* Harvey P. Dale, Dec 06 2018 *)
  • Maxima
    makelist((11*n+9)^6, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(21, n, (11*n-2)^6) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^6 for n in (0..20)] # G. C. Greubel, Oct 28 2019
    

Formula

From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (531441 + 60279913*x + 450663942*x^2 + 601905542*x^3 + 157316657*x^4 + 4826361*x^5 + 64*x^6)/(1-x)^7.
E.g.f.: (531441 + 63468559*x + 380017561*x^2 + 502998210*x^3 + 219907820*x^4 + 35270169*x^5 + 1771561*x^6)*exp(x). (End)

A017503 a(n) = (11*n + 9)^7.

Original entry on oeis.org

4782969, 1280000000, 27512614111, 230539333248, 1174711139837, 4398046511104, 13348388671875, 34792782221696, 80798284478113, 171382426877952, 337931541778439, 627485170000000, 1107984764452581, 1874584905187328, 3057125241215467, 4828861374436224
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), this sequence (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A001015.

Programs

  • GAP
    List([0..20], n-> (11*n+9)^7); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^7: n in [0..20]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    A017503:=n->(11*n+9)^7; seq(A017503(n), n=0..50); # Wesley Ivan Hurt, Nov 20 2013
  • Mathematica
    Table[(11n+9)^7, {n,0,50}] (* Wesley Ivan Hurt, Nov 20 2013 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{4782969,1280000000,27512614111,230539333248,1174711139837,4398046511104,13348388671875,34792782221696},20] (* Harvey P. Dale, Nov 12 2022 *)
  • PARI
    vector(21, n, (11*n-2)^7) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^7 for n in (0..20)] # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = A001015(A017497(n)). - Michel Marcus, Nov 21 2013
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (4782969 + 1241736248*x + 17406537243*x^2 + 46010574096*x^3 + 29404476791*x^4 + 4084486872*x^5 + 62747493*x^6 + 128*x^7)/(1-x)^8.
E.g.f.: (4782969 + 1275217031*x + 12478698540*x^2 + 25306117991*x^3 + 17188094770*x^4 + 4676276836*x^5 + 520838934*x^6 + 19487171*x^7)*exp(x). (End)

A017504 a(n) = (11*n + 9)^8.

Original entry on oeis.org

43046721, 25600000000, 852891037441, 9682651996416, 62259690411361, 281474976710656, 1001129150390625, 2992179271065856, 7837433594376961, 18509302102818816, 40213853471634241, 81573072100000000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), this sequence (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A001016.

Programs

  • GAP
    List([0..20], n-> (11*n+9)^8); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^8: n in [0..20]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq((11*n+9)^8, n=0..20); # G. C. Greubel, Oct 28 2019
  • Mathematica
    (11*Range[0,20]+9)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {43046721,25600000000,852891037441,9682651996416, 62259690411361, 281474976710656,1001129150390625, 2992179271065856, 7837433594376961}, 20] (* Harvey P. Dale, Dec 25 2013 *)
  • PARI
    vector(21, n, (11*n-2)^8) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^8 for n in (0..20)] # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = 9*a(n-1) -36*a(n-2) +84*a(n-3) -126*a(n-4) +126*a(n-5) -84*a(n-6) +36*a(n-7) -9*a(n-8) +a(n-9). - Harvey P. Dale, Dec 25 2013
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (43046721 +25212579511*x +624040719397*x^2 +2924616734883*x^3 + 3674923678339*x^4 +1290563847493*x^5 +102733746903*x^6 +815728417*x^7 + 256*x^8)/(1-x)^9.
E.g.f.: (43046721 +25556953279*x +400867042081*x^2 +1200122639562*x^3 +
1189336320711*x^4 +488350759974*x^5 +90501965246*x^6 +7405124980*x^7 + 214358881*x^8)*exp(x). (End)

A017505 a(n) = (11*n + 9)^9.

Original entry on oeis.org

387420489, 512000000000, 26439622160671, 406671383849472, 3299763591802133, 18014398509481984, 75084686279296875, 257327417311663616, 760231058654565217, 1999004627104432128, 4785448563124474679
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), this sequence (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A001017.

Programs

  • GAP
    List([0..20], n-> (11*n+9)^9); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^9: n in [0..20]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq((11*n+9)^9, n=0..20); # G. C. Greubel, Oct 28 2019
  • Mathematica
    (11*Range[20] -2)^9 (* G. C. Greubel, Oct 28 2019 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{387420489,512000000000,26439622160671,406671383849472,3299763591802133,18014398509481984,75084686279296875,257327417311663616,760231058654565217,1999004627104432128},20] (* Harvey P. Dale, Nov 18 2022 *)
  • Maxima
    makelist((11*n+9)^9, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(21, n, (11*n-2)^9) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^9 for n in (0..20)] # G. C. Greubel, Oct 28 2019
    

Formula

From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (387420489 + 508125795110*x + 21337056082676*x^2 + 165268671784082*x^3 + 361474108840298*x^4 + 251642575443146*x^5 + 52874765679980*x^6 + 2535762569534*x^7 + 10604494253*x^8 + 512*x^9)/(1-x)^10.
E.g.f.: (387420489 + 511612579511*x + 12708004790580*x^2 + 54814688324495* x^3 + 76236174032865*x^4 + 44337148166157*x^5 + 12159505753164*x^6 + 1632362365986*x^7 + 102249186237*x^8 + 2357947691*x^9)*exp(x). (End)

A017508 a(n) = (11*n + 9)^12.

Original entry on oeis.org

282429536481, 4096000000000000, 787662783788549761, 30129469486639681536, 491258904256726154641, 4722366482869645213696, 31676352024078369140625, 163674647745587512938496, 693842360995438000295041, 2518170116818978404827136
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), this sequence (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+9)^12); # G. C. Greubel, Oct 29 2019
  • Magma
    [(11*n+9)^12: n in [0..20]]; // G. C. Greubel, Oct 29 2019
    
  • Maple
    seq((11*n+9)^12, n=0..0); # G. C. Greubel, Oct 28 2019
  • Mathematica
    (11*Range[20] -2)^12 (* G. C. Greubel, Oct 29 2019 *)
  • Maxima
    makelist((11*n+9)^12, n,0,30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(21, n, (11*n-2)^12) \\ G. C. Greubel, Oct 29 2019
    
  • Sage
    [(11*n+9)^12 for n in (0..20)] # G. C. Greubel, Oct 29 2019
    

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (282429536481 +4092328416025747*x +734436813292395279*x^2 + 20209260522541101077*x^3 +159842244003035759946*x^4 + 463756067839761680478*x^5 +544661828676570185790*x^6 +
262487410539784705770*x^7 +48674358916489218693*x^8 + 2906273242026287199*x^9 +36217472329783811*x^10 +23298085069233*x^11 + 4096*x^12)/(1-x)^13.
E.g.f.: (282429536481 + 4095717570463519*x + 389735533109043121*x^2 + 4629794808807415962*x^3 +15643775803972010981*x^4 +21329254236100801848* x^5 +14055885648635908792*x^6 +4951158185239377540*x^7 + 983467446953859582*x^8 +112116203770421565*x^9 +7184433177655591*x^10 + 237949933289574*x^11 +3138428376721*x^12)*exp(x). (End)
Showing 1-10 of 11 results. Next