cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A019819 Decimal expansion of sine of 10 degrees.

Original entry on oeis.org

1, 7, 3, 6, 4, 8, 1, 7, 7, 6, 6, 6, 9, 3, 0, 3, 4, 8, 8, 5, 1, 7, 1, 6, 6, 2, 6, 7, 6, 9, 3, 1, 4, 7, 9, 6, 0, 0, 0, 3, 7, 5, 6, 7, 7, 1, 8, 4, 0, 6, 9, 3, 8, 7, 2, 3, 6, 2, 4, 1, 3, 7, 8, 1, 3, 2, 0, 6, 5, 8, 2, 2, 1, 3, 9, 0, 1, 4, 7, 3, 5, 4, 2, 1, 5, 1, 6, 6, 1, 3, 1, 5, 7, 3, 9, 9, 5, 7, 4
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/9). - Stanislav Sykora, Apr 25 2012

Examples

			0.173648177...
		

Crossrefs

Cf. A019814.

Programs

Formula

Equals cos(4*Pi/9) = 2F1(7/6,-1/6;1/2;3/4) / 2 = - 2F1(4/3,-1/3;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
From Artur Jasinski, Oct 28 2008: (Start)
Decimal expansion of root of cubic polynomial 1 - 6*x + 8*x^3. (Others A019859, -A019879)
Decimal expansion of casus irreducibilis:
(1/2) * (((-i*sqrt(3) - 1)/2)^(2/3) + ((i*sqrt(3) - 1)/2)^(2/3)). (End)
Equals 2 * A019814 * A019894. - R. J. Mathar, Jan 17 2021
This^2 + A019889^2 = 1. - R. J. Mathar, Aug 31 2025

A019879 Decimal expansion of sine of 70 degrees.

Original entry on oeis.org

9, 3, 9, 6, 9, 2, 6, 2, 0, 7, 8, 5, 9, 0, 8, 3, 8, 4, 0, 5, 4, 1, 0, 9, 2, 7, 7, 3, 2, 4, 7, 3, 1, 4, 6, 9, 9, 3, 6, 2, 0, 8, 1, 3, 4, 2, 6, 4, 4, 6, 4, 6, 3, 3, 0, 9, 0, 2, 8, 6, 6, 6, 2, 7, 7, 4, 2, 2, 1, 2, 1, 0, 9, 9, 5, 8, 8, 9, 4, 5, 8, 9, 4, 9, 7, 4, 5, 8, 8, 9, 8, 3, 7, 9, 4, 8, 0, 6, 7
Offset: 0

Views

Author

Keywords

Comments

It is well known that the length sin 70° (cos 20°) is not constructible with ruler and compass, since it is a root of the irreducible polynomial 8x^3 - 6x - 1 and 3 fails to divide any power of 2. - Jean-François Alcover, Aug 10 2014 [cf. the Maxfield ref.]
A cubic number with denominator 2. - Charles R Greathouse IV, Aug 27 2017
From Peter Bala, Oct 21 2021: (Start)
The minimal polynomial of cos(Pi/9) is 8*x^3 - 6*x - 1 with discriminant (2^6)*(3^4), a square: hence the Galois group of the algebraic number field Q(sin(70°) over Q is the cyclic group of order 3.
The two other zeros of the minimal polynomial are cos(5*Pi/9) = - A019819 and cos(7*Pi/9) = - A019859. The mapping z -> 1 - 2*z^2 cyclically permutes the three zeros. The inverse permutation is given by the mapping z -> 2*z^2 - z - 1. (End)

Examples

			0.93969262...
		

References

  • J. E. Maxfield and M. W. Maxfield, Abstract Algebra and Solution by Radicals, Dover Publications ISBN 0-486-67121-6, (1992), p. 197.

Crossrefs

Programs

Formula

Equals 2*A019844*A019864. - R. J. Mathar, Jan 17 2021
Equals cos(Pi/9) = (1/2)*A332437. - Peter Bala, Oct 21 2021
Equals 2F1(-1/6,1/6 ; 1/2; 3/4). - R. J. Mathar, Aug 31 2025

A019889 Decimal expansion of sine of 80 degrees = cos(Pi/18).

Original entry on oeis.org

9, 8, 4, 8, 0, 7, 7, 5, 3, 0, 1, 2, 2, 0, 8, 0, 5, 9, 3, 6, 6, 7, 4, 3, 0, 2, 4, 5, 8, 9, 5, 2, 3, 0, 1, 3, 6, 7, 0, 6, 4, 3, 2, 5, 1, 7, 1, 9, 8, 4, 2, 4, 1, 8, 7, 9, 0, 0, 2, 5, 7, 5, 2, 3, 5, 5, 8, 2, 7, 5, 9, 9, 9, 4, 3, 0, 3, 6, 2, 3, 9, 2, 7, 4, 6, 7, 8, 4, 1, 0, 0, 5, 6, 1, 1, 9, 8, 9, 9
Offset: 0

Views

Author

Keywords

Examples

			0.9848077530122080593667430245895230136706432517198424187900...
		

Crossrefs

Programs

Formula

Equals 2F1(7/12,5/12;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Also the real part of I^(1/9). - Stanislav Sykora, Nov 29 2013
Equals sin(4*Pi/9). - Wesley Ivan Hurt, Sep 01 2014
Equals 2*A019849*A019859. - R. J. Mathar, Jan 17 2021
Largest positive root of 64*x^6 - 96*x^4 + 36*x^2 - 3. - Artur Jasinski, May 09 2025
Other roots are +- A019849 and +- A019829. - R. J. Mathar, Aug 29 2025
4*this^3 -3*this = A010527. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/12,1/12; 1/2 ; 3/4). - R. J. Mathar, Aug 31 2025

A019884 Decimal expansion of sine of 75 degrees.

Original entry on oeis.org

9, 6, 5, 9, 2, 5, 8, 2, 6, 2, 8, 9, 0, 6, 8, 2, 8, 6, 7, 4, 9, 7, 4, 3, 1, 9, 9, 7, 2, 8, 8, 9, 7, 3, 6, 7, 6, 3, 3, 9, 0, 4, 8, 3, 9, 0, 0, 8, 4, 0, 4, 5, 5, 0, 4, 0, 2, 3, 4, 3, 0, 7, 6, 3, 1, 0, 4, 2, 3, 2, 1, 3, 9, 7, 9, 8, 5, 5, 5, 1, 6, 3, 4, 7, 5, 6, 1, 7, 4, 1, 8, 5, 8, 0, 7, 0, 4, 5, 1
Offset: 0

Views

Author

Keywords

Comments

Also the real part of i^(1/6). - Stanislav Sykora, Apr 25 2012
Length of one side of the new Type 15 Convex Pentagon. - Michel Marcus, Aug 04 2015

Examples

			0.96592582628906828674974319972889736763390483900840455040234307631042...
		

Crossrefs

Cf. A120683.

Programs

Formula

Equals cos(Pi/12) = [1+sqrt(3)]/[2*sqrt(2)] = A090388 * A020765. - R. J. Mathar, Jun 18 2006
Equals A019859 * A019874 + A019834 * A019849 = A019881 * A019896 + A019812 * A019827 . - R. J. Mathar, Jan 27 2021
Equals 1/(sqrt(6) - sqrt(2)) = 1/A120683. - Amiram Eldar, Aug 04 2022
Largest of the 4 real-valued roots of 16*x^4 -16*x^2 +1=0. - R. J. Mathar, Aug 29 2025
4*this^3 -3*this = A010503. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8 ;1/2;3/4) = 2F1(-1/6,1/6;1/2;1/2). - R. J. Mathar, Aug 31 2025

A019864 Decimal expansion of sine of 55 degrees.

Original entry on oeis.org

8, 1, 9, 1, 5, 2, 0, 4, 4, 2, 8, 8, 9, 9, 1, 7, 8, 9, 6, 8, 4, 4, 8, 8, 3, 8, 5, 9, 1, 6, 8, 4, 3, 4, 3, 1, 8, 9, 0, 0, 1, 1, 4, 6, 9, 0, 2, 6, 1, 6, 2, 0, 0, 8, 2, 5, 7, 5, 5, 5, 0, 4, 1, 2, 5, 4, 1, 8, 8, 5, 5, 8, 4, 5, 4, 6, 9, 3, 0, 8, 0, 7, 5, 2, 9, 6, 2, 4, 5, 2, 8, 0, 8, 4, 6, 1, 3, 3, 0
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 12 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Programs

Formula

Equals cos(7*Pi/36) = 2F1(19/24,5/24;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008

A019938 Decimal expansion of tangent of 40 degrees.

Original entry on oeis.org

8, 3, 9, 0, 9, 9, 6, 3, 1, 1, 7, 7, 2, 8, 0, 0, 1, 1, 7, 6, 3, 1, 2, 7, 2, 9, 8, 1, 2, 3, 1, 8, 1, 3, 6, 4, 6, 8, 7, 4, 3, 4, 2, 8, 3, 0, 1, 2, 3, 4, 6, 5, 3, 3, 2, 4, 4, 1, 0, 2, 0, 3, 9, 2, 3, 2, 5, 1, 8, 3, 2, 8, 0, 5, 5, 0, 3, 4, 5, 2, 1, 7, 6, 0, 8, 0, 6, 7, 2, 4, 1, 1, 3, 1, 2, 8, 8, 3, 0
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 50 degrees. - Ivan Panchenko, Aug 01 2014

Examples

			0.839099631177280011763127298123181364687434283012346533244102...
		

Crossrefs

Cf. A019849 (sine of 40 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(2*Pi(R)/9); // G. C. Greubel, Nov 25 2018
    
  • Mathematica
    RealDigits[Tan[2*Pi/9], 10, 100][[1]] (* G. C. Greubel, Nov 25 2018 *)
    RealDigits[Tan[40 Degree],10,120][[1]] (* Harvey P. Dale, Apr 06 2022 *)
  • PARI
    default(realprecision, 100); tan(2*Pi/9) \\ G. C. Greubel, Nov 25 2018
    
  • PARI
    polrootsreal(x^6-33*x^4+27*x^2-3)[5] \\ Charles R Greathouse IV, Feb 05 2025
    
  • Sage
    numerical_approx(tan(2*pi/9), digits=100) # G. C. Greubel, Nov 25 2018

Formula

One of the 6 real-valued roots of x^6-33*x^4+27*x^2-3=0. - R. J. Mathar, Aug 31 2025
Equals A019849/A019859. - R. J. Mathar, Aug 31 2025

A019948 Decimal expansion of tangent of 50 degrees.

Original entry on oeis.org

1, 1, 9, 1, 7, 5, 3, 5, 9, 2, 5, 9, 4, 2, 0, 9, 9, 5, 8, 7, 0, 5, 3, 0, 8, 0, 7, 1, 8, 6, 0, 4, 1, 9, 3, 3, 6, 9, 3, 0, 7, 0, 0, 4, 0, 7, 7, 0, 8, 5, 4, 3, 8, 5, 3, 6, 5, 4, 8, 3, 0, 0, 0, 6, 9, 0, 3, 4, 1, 2, 1, 4, 5, 8, 9, 0, 5, 5, 1, 7, 7, 2, 7, 5, 8, 1, 0, 9, 3, 9, 4, 2, 7, 3, 7, 7, 7, 7, 3
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 40 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			1.19175359259420995870530807186041933693070040770854385365483...
		

Crossrefs

Cf. A019859 (sine of 50 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(5*Pi(R)/18); // G. C. Greubel, Nov 23 2018
    
  • Mathematica
    RealDigits[Tan[5*Pi/18], 10, 100][[1]] (* G. C. Greubel, Nov 23 2018 *)
  • PARI
    default(realprecision, 100); tan(5*Pi/18) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    numerical_approx(tan(5*pi/18), digits=100) # G. C. Greubel, Nov 23 2018

Formula

A root of 3*x^6 -27*x^4 +33*x^2 -1 =0 (others A019968, A019908). - R. J. Mathar, Aug 29 2025
Showing 1-7 of 7 results.