cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A019819 Decimal expansion of sine of 10 degrees.

Original entry on oeis.org

1, 7, 3, 6, 4, 8, 1, 7, 7, 6, 6, 6, 9, 3, 0, 3, 4, 8, 8, 5, 1, 7, 1, 6, 6, 2, 6, 7, 6, 9, 3, 1, 4, 7, 9, 6, 0, 0, 0, 3, 7, 5, 6, 7, 7, 1, 8, 4, 0, 6, 9, 3, 8, 7, 2, 3, 6, 2, 4, 1, 3, 7, 8, 1, 3, 2, 0, 6, 5, 8, 2, 2, 1, 3, 9, 0, 1, 4, 7, 3, 5, 4, 2, 1, 5, 1, 6, 6, 1, 3, 1, 5, 7, 3, 9, 9, 5, 7, 4
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/9). - Stanislav Sykora, Apr 25 2012

Examples

			0.173648177...
		

Crossrefs

Cf. A019814.

Programs

Formula

Equals cos(4*Pi/9) = 2F1(7/6,-1/6;1/2;3/4) / 2 = - 2F1(4/3,-1/3;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
From Artur Jasinski, Oct 28 2008: (Start)
Decimal expansion of root of cubic polynomial 1 - 6*x + 8*x^3. (Others A019859, -A019879)
Decimal expansion of casus irreducibilis:
(1/2) * (((-i*sqrt(3) - 1)/2)^(2/3) + ((i*sqrt(3) - 1)/2)^(2/3)). (End)
Equals 2 * A019814 * A019894. - R. J. Mathar, Jan 17 2021
This^2 + A019889^2 = 1. - R. J. Mathar, Aug 31 2025

A130880 Decimal expansion of 2*sin(Pi/18).

Original entry on oeis.org

3, 4, 7, 2, 9, 6, 3, 5, 5, 3, 3, 3, 8, 6, 0, 6, 9, 7, 7, 0, 3, 4, 3, 3, 2, 5, 3, 5, 3, 8, 6, 2, 9, 5, 9, 2, 0, 0, 0, 7, 5, 1, 3, 5, 4, 3, 6, 8, 1, 3, 8, 7, 7, 4, 4, 7, 2, 4, 8, 2, 7, 5, 6, 2, 6, 4, 1, 3, 1, 6, 4, 4, 2, 7, 8, 0, 2, 9, 4, 7, 0, 8, 4, 3, 0, 3, 3, 2, 2, 6, 3, 1, 4, 7, 9, 9, 1, 4, 8, 0, 2, 3, 9, 1, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2007

Keywords

Comments

Also: a bond percolation threshold probability on the triangular lattice.
Also: the edge length of a regular 18-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272488). - Stanislav Sykora, May 01 2016

Examples

			0.347296355333860697703433253538629592...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.18.1, p. 373.

Crossrefs

Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A272491 (n=19). - Stanislav Sykora, May 01 2016

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/18], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/18)

Formula

Equals 2*A019819 = A019829/A019889.
Algebraic number with minimal polynomial over Q equal to x^3 - 3*x + 1, a cyclic cubic, having zeros 2*sin(Pi/18) (= 2*cos(4*Pi/9)), 2*sin(5*Pi/18) (= 2*cos(2*Pi/9)) and -2*sin(7*Pi/18) (= -2*cos(Pi/9)). Cf. A332437. - Peter Bala, Oct 23 2021
Equals 2 + rho(9) - rho(9)^2, an element of the extension field Q(rho(9)), with rho(9) = 2*cos(Pi/9) = A332437 with minimal polynomial x^3 - 3*x - 1 over Q. - Wolfdieter Lang, Sep 20 2022
Equals -1 + Product_{k>=3} (1 - (-1)^k/A063289(k)). - Amiram Eldar, Nov 22 2024
Equals A133749/2 = 1 - A178959. - Hugo Pfoertner, Dec 15 2024

A019824 Decimal expansion of sine of 15 degrees.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 0, 4, 5, 1, 0, 2, 5, 2, 0, 7, 6, 2, 3, 4, 8, 8, 9, 8, 8, 3, 7, 6, 2, 4, 0, 4, 8, 3, 2, 8, 3, 4, 9, 0, 6, 8, 9, 0, 1, 3, 1, 9, 9, 3, 0, 5, 1, 3, 8, 1, 4, 0, 0, 3, 2, 0, 7, 3, 1, 5, 0, 5, 6, 9, 7, 4, 7, 4, 8, 8, 0, 1, 9, 9, 6, 9, 2, 2, 3, 6, 7, 9, 7, 4, 6, 9, 4, 2, 4, 9, 6, 6, 5
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/6). - Stanislav Sykora, Apr 25 2012

Examples

			0.258819045102520762348898837624048328349068901319930513814003207315...
		

Crossrefs

Programs

Formula

Equals (sqrt(3)-1)/(2*sqrt(2)) = (A002194 -1) * A020765 = sin(Pi/12). - R. J. Mathar, Jun 18 2006
Equals 2F1(9/8,-1/8;1/2;3/4) / 2 = - 2F1(11/8,-3/8;1/2;3/4) / 2 = cos(5*Pi/12). - R. J. Mathar, Oct 27 2008
Equals sqrt(2 - sqrt(3))/2 = (1/2) * A101263. - Amiram Eldar, Aug 05 2020
This^2 + A019884^2=1. - R. J. Mathar, Aug 31 2025
Smallest positive of the 4 real-valued roots of 16*x^4-16*x^2+1=0. - R. J. Mathar, Aug 31 2025

A019829 Decimal expansion of sine of 20 degrees.

Original entry on oeis.org

3, 4, 2, 0, 2, 0, 1, 4, 3, 3, 2, 5, 6, 6, 8, 7, 3, 3, 0, 4, 4, 0, 9, 9, 6, 1, 4, 6, 8, 2, 2, 5, 9, 5, 8, 0, 7, 6, 3, 0, 8, 3, 3, 6, 7, 5, 1, 4, 1, 6, 0, 6, 2, 8, 4, 6, 5, 0, 4, 8, 4, 9, 7, 6, 8, 4, 7, 1, 4, 7, 6, 3, 7, 0, 2, 0, 7, 7, 5, 9, 9, 5, 6, 4, 1, 9, 0, 1, 8, 2, 3, 3, 8, 5, 2, 5, 5, 4, 7
Offset: 0

Views

Author

Keywords

Examples

			0.34202014332566873304409961468225958076308336751416062846504849768471476...
		

Crossrefs

Cf. A323601.

Programs

  • Mathematica
    RealDigits[ Sin[Pi/9], 10, 111][[1]]  (* Robert G. Wilson v *)
  • PARI
    /* for x = 20 degrees, sin(9x) = 0 */
    /* so sin(x) is a zero of this polynomial */
    sin_9(x)=9*x-120*x^3+432*x^5-576*x^7+256*x^9
    x=34;y=100;print(3);print(4);
    for(digits=1, 110, {d=0;y=y*10;while(sin_9((10*x+d)/y) > 0, d++);
    d--; /* while loop overshoots correct digit */
    print(d); x=10*x+d})
    \\ Michael B. Porter, Jan 27 2010
    
  • PARI
    sin(Pi/9) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals cos(7*Pi/18) = 2F1(13/12,-1/12;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Root of the equation 64*x^6 - 96*x^4 + 36*x^2 - 3 = 0. - Vaclav Kotesovec, Jan 19 2019 (other A019849, A019889)
Equals sqrt(8 - 2^(4/3)*(1 + i*sqrt(3))^(2/3) + i*2^(2/3)*(1 + i*sqrt(3))^(1/3)*(i + sqrt(3)))/4, where i is the imaginary unit. - Vaclav Kotesovec, Jan 19 2019
Equals 2*A019819 *A019889. - R. J. Mathar, Jan 17 2021
This^2 + A019879^2=1. - R. J. Mathar, Aug 31 2025

A019814 Decimal expansion of sine of 5 degrees.

Original entry on oeis.org

0, 8, 7, 1, 5, 5, 7, 4, 2, 7, 4, 7, 6, 5, 8, 1, 7, 3, 5, 5, 8, 0, 6, 4, 2, 7, 0, 8, 3, 7, 4, 7, 3, 5, 5, 1, 3, 7, 7, 7, 0, 1, 1, 5, 6, 1, 4, 9, 7, 0, 2, 6, 7, 2, 6, 1, 3, 7, 4, 3, 3, 6, 7, 5, 6, 8, 4, 2, 9, 8, 2, 7, 4, 8, 1, 6, 7, 6, 3, 3, 0, 5, 3, 7, 4, 0, 1, 2, 4, 8, 2, 7, 6, 9, 9, 6, 3, 7, 2, 1
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 12 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.087155...
		

Crossrefs

Programs

Formula

Equals A019813 * A019898 + A019810 * A019895. - R. J. Mathar, Jan 27 2021
Equals sin(Pi/36) = cos(17*Pi/36). 2*this^2-1 = -A019889. - R. J. Mathar, Aug 29 2025
One of the 12 real-valued roots of 4096*x^12 -12288*x^10 +13824*x^8 -7168*x^6 +1680*x^4 -144*x^2 +1 =0. - R. J. Mathar, Aug 29 2025

Extensions

Zero added in front by R. J. Mathar, Feb 05 2009

A019894 Decimal expansion of sine of 85 degrees.

Original entry on oeis.org

9, 9, 6, 1, 9, 4, 6, 9, 8, 0, 9, 1, 7, 4, 5, 5, 3, 2, 2, 9, 5, 0, 1, 0, 4, 0, 2, 4, 7, 3, 8, 8, 8, 0, 4, 6, 1, 8, 3, 5, 6, 2, 6, 7, 2, 6, 4, 5, 8, 5, 0, 9, 7, 4, 5, 2, 5, 4, 4, 2, 2, 7, 7, 3, 8, 0, 1, 1, 6, 7, 4, 9, 8, 3, 8, 2, 5, 1, 5, 9, 9, 6, 7, 4, 1, 8, 6, 3, 8, 6, 2, 5, 9, 6, 5, 1, 9, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[Sin[17*Pi/36],10,99][[1]] (* Stefano Spezia, Feb 09 2025 *)

Formula

Equals cos(Pi/36) = 2F1(13/24,11/24;1/2;3/4) / 2 . - R. J. Mathar, Oct 27 2008

A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).

Original entry on oeis.org

9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.974927912181823607018131682993931217232785800619997437648...
		

Crossrefs

Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

  • Magma
    R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
    
  • Mathematica
    RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
  • SageMath
    numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022

Formula

2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025

A019820 Decimal expansion of sine of 11 degrees.

Original entry on oeis.org

1, 9, 0, 8, 0, 8, 9, 9, 5, 3, 7, 6, 5, 4, 4, 8, 1, 2, 4, 0, 5, 1, 4, 0, 4, 8, 7, 9, 5, 8, 3, 8, 7, 6, 1, 9, 6, 2, 7, 9, 2, 0, 7, 5, 1, 2, 7, 4, 0, 5, 5, 2, 6, 6, 9, 6, 8, 8, 1, 8, 1, 3, 2, 6, 1, 7, 9, 7, 8, 3, 9, 9, 2, 0, 2, 1, 7, 7, 5, 4, 6, 5, 0, 8, 8, 6, 5, 9, 2, 4, 7, 3, 9, 1, 6, 7, 1, 8, 8
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 48 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Crossrefs

Programs

Formula

Equals A019819 * A019898 + A019810 * A019889. - R. J. Mathar, Jan 27 2021

A019908 Decimal expansion of tangent of 10 degrees.

Original entry on oeis.org

1, 7, 6, 3, 2, 6, 9, 8, 0, 7, 0, 8, 4, 6, 4, 9, 7, 3, 4, 7, 1, 0, 9, 0, 3, 8, 6, 8, 6, 8, 6, 1, 8, 9, 8, 6, 1, 2, 1, 6, 3, 3, 0, 6, 2, 3, 4, 8, 0, 9, 8, 6, 6, 0, 2, 0, 5, 3, 6, 3, 9, 8, 3, 8, 3, 5, 4, 4, 6, 9, 0, 8, 9, 1, 7, 7, 5, 8, 6, 2, 5, 4, 9, 8, 6, 5, 1, 3, 3, 5, 0, 8, 0, 3, 2, 4, 4, 5, 3
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 80 degrees. - Mohammad K. Azarian, Jun 30 2013

Examples

			0.176326980708464973471090386868618986121633...
		

Crossrefs

Cf. A019918.

Programs

Formula

A root of 3*x^6 -27*x^4 +33*x^2 -1 =0 (others A019968, A019948). - R. J. Mathar, Aug 29 2025
tan(Pi/18) = A019819/A019889. - R. J. Mathar, Aug 31 2025

A232737 Decimal expansion of the real part of I^(1/8), or cos(Pi/16).

Original entry on oeis.org

9, 8, 0, 7, 8, 5, 2, 8, 0, 4, 0, 3, 2, 3, 0, 4, 4, 9, 1, 2, 6, 1, 8, 2, 2, 3, 6, 1, 3, 4, 2, 3, 9, 0, 3, 6, 9, 7, 3, 9, 3, 3, 7, 3, 0, 8, 9, 3, 3, 3, 6, 0, 9, 5, 0, 0, 2, 9, 1, 6, 0, 8, 8, 5, 4, 5, 3, 0, 6, 5, 1, 3, 5, 4, 9, 6, 0, 5, 0, 6, 3, 9, 1, 5, 0, 6, 4, 9, 8, 5, 8, 5, 3, 3, 0, 0, 7, 6, 3, 2, 5, 9, 8, 9, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232738.

Examples

			0.9807852804032304491261822361342390369739337308933360950029160885453...
		

Crossrefs

Cf. A232738 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232735 (real(I^(1/7))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
Root of 128*x^8 -256*x^6 +160*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
2*this^2 -1 = A144981. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8;1/2;1/2). - R. J. Mathar, Aug 31 2025
Showing 1-10 of 13 results. Next