cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A021000 Duplicate of A020727.

Original entry on oeis.org

2, 7, 24, 82, 280, 956, 3264, 11144, 38048, 129904, 443520, 1514272, 5170048
Offset: 0

Views

Author

Keywords

A164090 a(n) = 2*a(n-2) for n > 2; a(1) = 2, a(2) = 3.

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 09 2009

Keywords

Comments

Interleaving of A000079 without initial 1 and A007283.
Agrees from a(2) onward with A145751 for all terms listed there (up to 65536). Apparently equal to 2, 3 followed by A090989. Equals 2 followed by A163978.
Binomial transform is A000129 without first two terms, second binomial transform is A020727, third binomial transform is A164033, fourth binomial transform is A164034, fifth binomial transform is A164035.
Number of achiral necklaces or bracelets with n beads using up to 2 colors. For n=5, the eight achiral necklaces or bracelets are AAAAA, AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB, and BBBBB. - Robert A. Russell, Sep 22 2018

Crossrefs

Programs

  • Magma
    [ n le 2 select n+1 else 2*Self(n-2): n in [1..42] ];
    
  • Mathematica
    a[n_] := If[EvenQ[n], 3*2^(n/2 - 1), 2^((n + 1)/2)]; Array[a, 42] (* Jean-François Alcover, Oct 12 2017 *)
    RecurrenceTable[{a[1]==2,a[2]==3,a[n]==2a[n-2]},a,{n,50}] (* or *) LinearRecurrence[{0,2},{2,3},50] (* Harvey P. Dale, Mar 01 2018 *)
  • PARI
    a(n) = if(n%2,2,3) * 2^((n-1)\2); \\ Andrew Howroyd, Oct 07 2017

Formula

a(n) = A029744(n+1).
a(n) = A052955(n-1) + 1.
a(n) = A027383(n-2) + 2 for n > 1.
a(n) = A060482(n-1) + 3 for n > 3.
a(n) = A070875(n) - A070875(n-1).
a(n) = (7 - (-1)^n)*2^((1/4)*(2*n - 1 + (-1)^n))/4.
G.f.: x*(2+3*x)/(1-2*x^2).
a(n) = A063759(n-1), n>1. - R. J. Mathar, Aug 17 2009
Sum_{n>=1} 1/a(n) = 5/3. - Amiram Eldar, Mar 28 2022

A056236 a(n) = (2 + sqrt(2))^n + (2 - sqrt(2))^n.

Original entry on oeis.org

2, 4, 12, 40, 136, 464, 1584, 5408, 18464, 63040, 215232, 734848, 2508928, 8566016, 29246208, 99852800, 340918784, 1163969536, 3974040576, 13568223232, 46324811776, 158162800640, 540001579008, 1843680714752, 6294719700992
Offset: 0

Views

Author

Henry Bottomley, Aug 11 2000

Keywords

Comments

First differences give A060995. - Jeremy Gardiner, Aug 11 2013
Binomial transform of A002203 [Bhadouria].
The binomial transform of this sequence is 2, 6, 22, 90, 386, .. = 2*A083878(n). - R. J. Mathar, Nov 10 2013

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-2},{2,4},30] (* Harvey P. Dale, Jan 18 2013 *)
  • PARI
    a(n) = 2*real((2+quadgen(8))^n);
    
  • Sage
    [lucas_number2(n,4,2) for n in range(37)] # Zerinvary Lajos, Jun 25 2008

Formula

a(n) = 4*a(n-1) - 2*a(n-2).
a(n) = a(n-2) - a(n-1) + 2*A020727(n-1).
a(n) = 2*A006012(n) = 4*A007052(n-1).
For n>2, a(n) = floor((2+sqrt(2))*a(n-1)).
G.f.: 2*(1-2*x)/(1-4*x+2*x^2).
From L. Edson Jeffery, Apr 08 2011: (Start)
a(n) = 2^(2*n)*(cos(Pi/8)^(2*n) + cos(3*Pi/8)^(2*n)).
a(n) = 3*a(n-1) + Sum_{k=1..(n-2)} a(k), for n>1, with a(0)=2, a(1)=4. (End)
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 8*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

Extensions

More terms from James Sellers, Aug 25 2000

A164033 a(n) = ((4+3*sqrt(2))*(3+sqrt(2))^n + (4-3*sqrt(2))*(3-sqrt(2))^n)/4.

Original entry on oeis.org

2, 9, 40, 177, 782, 3453, 15244, 67293, 297050, 1311249, 5788144, 25550121, 112783718, 497851461, 2197622740, 9700776213, 42821298098, 189022355097, 834385043896, 3683153777697, 16258227358910, 71767287709581
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

Keywords

Comments

Binomial transform of A020727. Third binomial transform of A164090. Inverse binomial transform of A164034.

Crossrefs

Cf. A020727, A164090 (2, 3, 4, 6, 8, 12), A164034.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((4+3*r)*(3+r)^n+(4-3*r)*(3-r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 09 2009
    
  • Mathematica
    CoefficientList[Series[(2-3*x)/(1-6*x+7*x^2), {x, 0, 1000}],
      x] (* or *) LinearRecurrence[{6,-7},{2,9}, 50] (* G. C. Greubel, Sep 08 2017 *)
  • PARI
    x='x+O('x^50); Vec((2-3*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Sep 08 2017

Formula

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 2, a(1) = 9.
G.f.: (2-3*x)/(1-6*x+7*x^2).
E.g.f.: (2*cosh(sqrt(2)*x) + (3/sqrt(2))*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 08 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 09 2009
Showing 1-4 of 4 results.