cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A021733 Decimal expansion of 1/729.

Original entry on oeis.org

0, 0, 1, 3, 7, 1, 7, 4, 2, 1, 1, 2, 4, 8, 2, 8, 5, 3, 2, 2, 3, 5, 9, 3, 9, 6, 4, 3, 3, 4, 7, 0, 5, 0, 7, 5, 4, 4, 5, 8, 1, 6, 1, 8, 6, 5, 5, 6, 9, 2, 7, 2, 9, 7, 6, 6, 8, 0, 3, 8, 4, 0, 8, 7, 7, 9, 1, 4, 9, 5, 1, 9, 8, 9, 0, 2, 6, 0, 6, 3, 1, 0, 0, 1, 3, 7, 1, 7, 4, 2, 1, 1, 2, 4, 8, 2, 8, 5, 3
Offset: 0

Views

Author

Keywords

Comments

729 = 3^6 = 9^3 = 27^2.
Period is 81 = 9^2 (see example for all 81 digits of the repeating part).
Repeating part in the form of 9 X 9 square table:
1, 3, 7, 1, 7, 4, 2, 1, 1,
2, 4, 8, 2, 8, 5, 3, 2, 2,
3, 5, 9, 3, 9, 6, 4, 3, 3,
4, 7, 0, 5, 0, 7, 5, 4, 4,
5, 8, 1, 6, 1, 8, 6, 5, 5,
6, 9, 2, 7, 2, 9, 7, 6, 6,
8, 0, 3, 8, 4, 0, 8, 7, 7,
9, 1, 4, 9, 5, 1, 9, 8, 9,
0, 2, 6, 0, 6, 3, 1, 0, 0.
Note that each column consists of 9 consecutive (cyclically repeated) digits out of 10. The missing digits in columns from left to right are {7, 6, 5, 4, 3, 2, 0, 9, 8}, which form also a cycle of 9 out of 10 consecutive digits in reverse order, all digits except 1. - Alexander Adamchuk, Dec 28 2013

Examples

			1/729 = 0.00137174211248285322359396433470507544581618655692729766\
803840877914951989026063100 (period 81). - _Alexander Adamchuk_, Dec 28 2013
		

Crossrefs

Cf. A068542 (period of the fraction 1/3^n).
Cf. A010701 (1/3), A000012 (1/9), A021031 (1/27), A021085 (1/81).

Programs

Formula

Equals Sum_{k>=1} (k*(k+1)/2)/10^(k+2). - Davide Rotondo, Jun 11 2025

A113694 Decimal expansion of 10/44955.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8, 0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8, 0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8, 0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8
Offset: 0

Views

Author

Daisuke Minematsu and Ryohei Miyadera, Jan 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[10/44955,10,120][[1]]] (* Harvey P. Dale, May 13 2012 *)

A021247 Decimal expansion of 1/243.

Original entry on oeis.org

0, 0, 4, 1, 1, 5, 2, 2, 6, 3, 3, 7, 4, 4, 8, 5, 5, 9, 6, 7, 0, 7, 8, 1, 8, 9, 3, 0, 0, 4, 1, 1, 5, 2, 2, 6, 3, 3, 7, 4, 4, 8, 5, 5, 9, 6, 7, 0, 7, 8, 1, 8, 9, 3, 0, 0, 4, 1, 1, 5, 2, 2, 6, 3, 3, 7, 4, 4, 8, 5, 5, 9, 6, 7, 0, 7, 8, 1, 8, 9, 3, 0, 0, 4, 1, 1, 5, 2, 2, 6, 3, 3, 7, 4, 4, 8, 5, 5, 9
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Period 27 Repeat: [0, 0, 4, 1, 1, 5, 2, 2, 6, 3, 3, 7, 4, 4, 8, 5, 5, 9, 6, 7, 0, 7, 8, 1, 8, 9, 3]. - Wesley Ivan Hurt, May 25 2014

Examples

			0.00411522633744855967078189300411522633744855967078189300411522633744855967078...
		

Crossrefs

Cf. A010701 (1/3), A000012 (1/3^2), A021085 (1/3^4), A021733 (1/3^6).
Cf. A068542 (period of the fraction 1/3^n).

Programs

  • Maple
    Digits:=100; evalf(1/243); # Wesley Ivan Hurt, May 25 2014
  • Mathematica
    RealDigits[1/243, 10, 100, -1][[1]] (* Wesley Ivan Hurt, May 25 2014; corrected by Harvey P. Dale, Jan 23 2019 *)
    PadRight[{},120,{0,0,4,1,1,5,2,2,6,3,3,7,4,4,8,5,5,9,6,7,0,7,8,1,8,9,3}] (* Harvey P. Dale, Jan 23 2019 *)
  • PARI
    A021247_upto(N=100)={localprec(N+3);digits((1/3^5+1)\.1^N)[^1]} \\ M. F. Hasler, Apr 23 2021

Formula

1/243 = 1/3^5. - M. F. Hasler, Apr 23 2021

A190352 The continued fraction expansion of tanh(Pi) requires the computation of the pairs (p_n, q_n); sequence gives values of q_n.

Original entry on oeis.org

1, 1, 268, 1073, 15290, 16363, 48016, 64379, 176774, 417927, 594701, 1607329, 5416688, 44940833, 140239187, 185180020, 1066139287, 4449737168, 5515876455, 81672007538, 822235951835, 903907959373, 18900395139295, 719118923252583, 738019318391878
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2011

Keywords

Comments

a(2) = 268 explains the comment in A021085 that "The decimal expansion of Sum_{n>=1} floor(n * tanh(Pi))/10^n is the same as that of 1/81 for the first 268 decimal places [Borwein et al.]".

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 13.

Crossrefs

Programs

  • Maple
    lim:=50: with(numtheory): cfr := cfrac(tanh(Pi),lim+10,'quotients'): q[0]:=1:q[1]:=cfr[2]: printf("%d, %d, ", q[0], q[1]): for n from 2 to lim do q[n]:=cfr[n+1]*q[n-1]+q[n-2]: printf("%d, ",q[n]): od: # Nathaniel Johnston, May 10 2011
  • Mathematica
    a[0] := 1; a[1] := 1; A060402:= ContinuedFraction[Tanh[Pi], 100];
    a[n_]:= a[n] = A060402[[n + 1]]*a[n - 1] + a[n - 2]; Join[{1, 1}, Table[a[n], {n, 2, 75}]] (* G. C. Greubel, Apr 05 2018 *)

Formula

a(n) = A060402(n)*a(n-1) + a(n-2) for n >= 2. - Nathaniel Johnston, May 10 2011

Extensions

a(4)-a(24) from Nathaniel Johnston, May 10 2011

A343614 Decimal expansion of P_{3,2}(4) = Sum 1/p^4 over primes == 2 (mod 3).

Original entry on oeis.org

0, 6, 4, 1, 8, 6, 1, 4, 5, 6, 9, 6, 5, 5, 7, 7, 7, 8, 9, 9, 0, 0, 9, 9, 0, 8, 6, 5, 8, 7, 4, 0, 2, 7, 3, 6, 8, 0, 9, 7, 5, 6, 3, 6, 2, 3, 4, 8, 6, 8, 0, 6, 4, 0, 8, 8, 4, 6, 2, 5, 4, 9, 2, 2, 5, 0, 6, 2, 1, 9, 1, 2, 6, 2, 1, 9, 3, 8, 9, 9, 8, 6, 4, 7, 9, 6, 5, 5, 2, 6, 9, 1, 6, 3, 8, 2, 2, 4, 0, 7
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			P_{3,2}(4) = 0.06418614569655777899009908658740273681...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085964 (PrimeZeta(4)), A021085 (1/3^4).
Cf. A343624 (same for primes 3k+1), A086034 (for primes 4k+1), A085993 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^4);s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343614_upto(N=100)={localprec(N+5); digits((PrimeZeta32(4)+1)\.1^N)[^1]} \\ see for the function PrimeZeta32.

Formula

P_{3,2}(4) = P(4) - 1/3^4 - P_{3,1}(4) = A085964 - A021085 - A343624.

A172525 a(n) = 111111111 * n.

Original entry on oeis.org

111111111, 222222222, 333333333, 444444444, 555555555, 666666666, 777777777, 888888888, 999999999, 1111111110, 1222222221, 1333333332, 1444444443, 1555555554, 1666666665, 1777777776, 1888888887, 1999999998, 2111111109, 2222222220, 2333333331, 2444444442, 2555555553
Offset: 1

Views

Author

Vincenzo Librandi, Feb 06 2010

Keywords

Crossrefs

Programs

  • Magma
    [9*n*12345679: n in [1..20]]; // Vincenzo Librandi, Aug 20 2014
    
  • Mathematica
    Table[9 n 12345679, {n, 1, 20}] (* Vincenzo Librandi, Aug 20 2014 *)
    LinearRecurrence[{2,-1},{111111111,222222222},20] (* Harvey P. Dale, Sep 10 2023 *)
  • PARI
    Vec(111111111*x/(x-1)^2 + O(x^100)) \\ Colin Barker, Aug 20 2014

Formula

From Colin Barker, Aug 20 2014: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: 111111111*x/(x-1)^2. (End)
From Elmo R. Oliveira, Jun 25 2025: (Start)
E.g.f.: 111111111*x*exp(x).
a(n) = 12345679*A008591(n). (End)

A384627 Decimal expansion of 1/998001.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 7, 0, 0, 8, 0, 0, 9, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 6, 0, 1, 7, 0, 1, 8, 0, 1, 9, 0, 2, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 4, 0, 2, 5, 0, 2, 6, 0, 2, 7, 0, 2, 8, 0, 2, 9
Offset: 0

Views

Author

Paolo Xausa, Jun 05 2025

Keywords

Comments

The decimals of this constant contain every 3-digit number, from 000 to 999, in order, except for 998.
Periodic with period 2997.

Examples

			0.0000010020030040050060070080090100110120130140150160170...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1/999^2, 10, 100, -1]]

Formula

Equals 1/(999^2).

A021985 Decimal expansion of 1/981.

Original entry on oeis.org

0, 0, 1, 0, 1, 9, 3, 6, 7, 9, 9, 1, 8, 4, 5, 0, 5, 6, 0, 6, 5, 2, 3, 9, 5, 5, 1, 4, 7, 8, 0, 8, 3, 5, 8, 8, 1, 7, 5, 3, 3, 1, 2, 9, 4, 5, 9, 7, 3, 4, 9, 6, 4, 3, 2, 2, 1, 2, 0, 2, 8, 5, 4, 2, 3, 0, 3, 7, 7, 1, 6, 6, 1, 5, 6, 9, 8, 2, 6, 7, 0, 7, 4, 4, 1, 3, 8, 6, 3, 4, 0, 4, 6, 8, 9, 0, 9, 2, 7
Offset: 0

Views

Author

Keywords

Comments

Generalization:
1/81 = Sum_{i >= 0} 19^i/100^(i+1),
1/981 = Sum_{i >= 0} 19^i/1000^(i+1), (this sequence)
1/9981 = Sum_{i >= 0} 19^i/10000^(i+1). - Daniel Forgues, Oct 28 2011

Crossrefs

Cf. A021085 (1/81).

A113657 Decimal expansion of 1/1089.

Original entry on oeis.org

0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 1, 0, 0, 0, 9, 1, 8, 2, 7, 3, 6
Offset: 0

Views

Author

Ryohei Miyadera, Jan 16 2006

Keywords

Comments

This sequence can also be produced by Sqrt[11111111111111111111111111111111111111111111] =11*Sqrt[91827364554637281910009182736455463728191], where Sqrt is the square root. In fact we found this from the square root and later looked for the same sequence in the expansion.
Comment from Eric Desbiaux, Apr 08 2008: Also, of course, decimal expansion of 9/9801. Note that
99/9801 = 0.0101010101010101010101...,
9999/9801 = 1.02020202020202020202020...,
999999/9801 = 102.0303030303030303030303...,
99999999/9801 = 10203.040404040404040404040404..., etc.

Examples

			0.0009182736455463728191000918273645546372819100091827364554...
		

Crossrefs

Programs

  • Mathematica
    m = 21; Sqrt[Apply[Plus, Table[11*100^k, {k, 0, m}]]]

Extensions

Edited by N. J. A. Sloane, May 15 2008, at the suggestion of R. J. Mathar.

A113818 Decimal expansion of the integer (101101101101101101101101101)/9.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 9, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 9
Offset: 26

Views

Author

Ryohei Miyadera and Daisuke Minematsu, Jan 23 2006

Keywords

Comments

Using square roots and periodic numbers you can produce this kind of curious sequence.

Examples

			(101101101101101101101101101)/9 = 11233455677900122344566789.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[101101101101101101101101101/9,10,26][[1]] (* Harvey P. Dale, May 21 2020 *)

Formula

(101101101101101101101101101)/9 or Sqrt[101101101101101101101101101], where sqrt is the square root.

Extensions

Edited by N. J. A. Sloane, May 26 2006
Previous Mathematica program replaced by Harvey P. Dale, May 21 2020
Showing 1-10 of 12 results. Next