cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A031324 Decimal digits of successive Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 3, 2, 1, 3, 4, 5, 5, 8, 9, 1, 4, 4, 2, 3, 3, 3, 7, 7, 6, 1, 0, 9, 8, 7, 1, 5, 9, 7, 2, 5, 8, 4, 4, 1, 8, 1, 6, 7, 6, 5, 1, 0, 9, 4, 6, 1, 7, 7, 1, 1, 2, 8, 6, 5, 7, 4, 6, 3, 6, 8, 7, 5, 0, 2, 5, 1, 2, 1, 3, 9, 3, 1, 9, 6, 4, 1, 8, 3, 1, 7, 8, 1, 1, 5
Offset: 0

Views

Author

Keywords

Comments

Decimal concatenation of Fibonacci numbers in base 10. - Daniel Forgues, Mar 25 2018

Examples

			0.011235813213455891442333776109871597...
		

Crossrefs

Programs

  • Maple
    F:= [seq(combinat:-fibonacci(n),n=0..50)]:
    map(t -> op(ListTools:-Reverse(convert(t,base,10))),F); # Robert Israel, Oct 11 2024
  • Mathematica
    Flatten[IntegerDigits/@Fibonacci[Range[0,30]]] (* Harvey P. Dale, Jan 28 2015 *)

Formula

An approximation, where each successive Fibonacci number is shifted right by one place (thus causing an overlap when numbers have more than one digit), is given by 10/89 (A021093). - Daniel Forgues, Mar 25 2018

A021113 Decimal expansion of 1/109.

Original entry on oeis.org

0, 0, 9, 1, 7, 4, 3, 1, 1, 9, 2, 6, 6, 0, 5, 5, 0, 4, 5, 8, 7, 1, 5, 5, 9, 6, 3, 3, 0, 2, 7, 5, 2, 2, 9, 3, 5, 7, 7, 9, 8, 1, 6, 5, 1, 3, 7, 6, 1, 4, 6, 7, 8, 8, 9, 9, 0, 8, 2, 5, 6, 8, 8, 0, 7, 3, 3, 9, 4, 4, 9, 5, 4, 1, 2, 8, 4, 4, 0, 3, 6, 6, 9, 7, 2, 4, 7, 7, 0, 6, 4, 2, 2, 0, 1, 8, 3, 4, 8, 6, 2, 3, 8, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

From Paul Curtz, Feb 23 2012: (Start)
The sequence of digits is periodic with period length 108. A feature of the period reading from the least significant digit back to the most significant digit is (see the blogspot link and A064737) that it "contains" the single-digit of every Fibonacci subsequence if the digits are added with carry of the previous sum. A064737 starts with the A000045 sequence, and then 5+8 = (1)3, 3+8+1=(1)2. "Every" Fibonacci sequence means (as illustrated in the blog) that one could also start from seeds like 6 and 7, or 7 and 8.
Similar observations are made for the digits of 1/89 in A021093, but following a Fibonacci pattern while reading in the other direction, starting with the most significant digits.
The frequency distribution of the digits 0 to 9 among the 108 digits (which sum to 486) of the period is well-balanced: 10, 11, 11, 11, 11, 11, 11, 11, 11, 10. If one sums over each 2nd, each 3rd, each 6th, each 9th or each 18th digit of the period, one gets 1/2, 1/3, 1/6, 1/9 and 1/18 of 486; again a feature of balance in the digits. There is a half-period in the sense that a(n) + a(n+54) = 9. (End)

Examples

			0.00917431192660550458715596330275229357798165137614...
		

Crossrefs

Programs

Formula

Equals Sum_{k>=1} (-1)^(k+1) * Fibonacci(k)/10^(k+1). - Amiram Eldar, Feb 05 2022

A165155 a(n) = 100*a(n-1) + 11^(n-1) for n>0, a(0)=0.

Original entry on oeis.org

0, 1, 111, 11221, 1123431, 112357741, 11235935151, 1123595286661, 112359548153271, 11235955029685981, 1123595505326545791, 112359550558592003701, 11235955056144512040711, 1123595505617589632447821, 112359550561793485956926031, 11235955056179728345526186341
Offset: 0

Views

Author

Mark Dols, Sep 05 2009

Keywords

Comments

Generalization of A000225. - Mark Dols, Jan 28 2010

Examples

			From _Mark Dols_, Jan 28 2010: (Start)
As triangle:
  ........... 1
  ......... 1 1 1
  ....... 1 1 2 2 1
  ..... 1 1 2 3 4 3 1
  ... 1 1 2 3 5 7 7 4 1
  . 1 1 2 3 5 9 3 5 1 5 1
  1 1 2 3 5 9 5 2 8 6 6 6 1
(Mirrored version of A162741) (End)
		

Crossrefs

Programs

  • Magma
    [(1/89)*(100^n-11^n): n in [0..40]] // Vincenzo Librandi, Dec 05 2010
    
  • Mathematica
    RecurrenceTable[{a[0]==0,a[n]==100a[n-1]+11^(n-1)},a,{n,40}] (* Harvey P. Dale, Feb 20 2016 *)
  • SageMath
    [(10^(2*n) - 11^n)/89 for n in range(41)] # G. C. Greubel, Feb 09 2023

Formula

G.f.: x/((1-11*x)*(1-100*x)). - R. J. Mathar, Nov 02 2016
E.g.f.: (1/89)*(exp(100*x) - exp(11*x)). - G. C. Greubel, Feb 09 2023

Extensions

a(0) prepended by Bruno Berselli, Oct 02 2015

A164899 Binomial matrix (1,10^n) read by antidiagonals.

Original entry on oeis.org

1, 1, 10, 1, 11, 100, 1, 12, 110, 1000, 1, 13, 121, 1100, 10000, 1, 14, 133, 1210, 11000, 100000, 1, 15, 146, 1331, 12100, 110000, 1000000, 1, 16, 160, 1464, 13310, 121000, 1100000, 10000000, 1, 17, 175, 1610, 14641, 133100, 1210000, 11000000, 100000000
Offset: 1

Views

Author

Mark Dols, Aug 30 2009

Keywords

Examples

			Matrix array, A(n, k), begins:
  1, 10, 100, 1000, ...
  1, 11, 110, 1100, ...
  1, 12, 121, 1210, ...
  1, 13, 133, 1331, ...
  1, 14, 146, 1464, ...
  1, 15, 160, 1610, ...
Antidiagonal triangle, T(n, k), begins as:
  1;
  1, 10;
  1, 11, 100;
  1, 12, 110, 1000;
  1, 13, 121, 1100, 10000;
  1, 14, 133, 1210, 11000, 100000;
  1, 15, 146, 1331, 12100, 110000, 1000000;
		

Crossrefs

Cf. A094704 (antidiagonal row sums).

Programs

  • Magma
    function T(n,k) // T = A164899
      if k eq n then return 10^(n-1);
      elif k eq 1 then return 1;
      else return T(n-1,k) + T(n-2,k-1);
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 10 2023
    
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==n, 10^(n-1), If[k==1, 1, T[n-1,k] +T[n-2, k-1]]];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 10 2023 *)
  • SageMath
    def T(n,k): # T = A164899
        if (k==n): return 10^(n-1)
        elif (k==1): return 1
        else: return T(n-1,k) + T(n-2,k-1)
    flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Feb 10 2023

Formula

Sum_{k=1..n} T(n, k) = A094704(n).
As a triangle T(n,k) read by rows, T(n,1) = 1, T(n,n) = 10^(n-1), and T(n,k) = T(n-1, k) + T(n-2, k-1) otherwise. - Joerg Arndt, Dec 10 2016
From G. C. Greubel, Feb 10 2023: (Start)
A(n, k) = A(n-1, k) + A(n-1, k-1), with A(n, 1) = 1 and A(1, k) = 10^(k-1) (array).
T(n, k) = A(n-k+1, k) (antidiagonal triangle). (End)

A227093 Decimal expansion of 1/9899.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 8, 1, 3, 2, 1, 3, 4, 5, 5, 9, 0, 4, 6, 3, 6, 8, 3, 2, 0, 0, 3, 2, 3, 2, 6, 4, 9, 7, 6, 2, 6, 0, 2, 2, 8, 3, 0, 5, 8, 8, 9, 4, 8, 3, 7, 8, 6, 2, 4, 1, 0, 3, 4, 4, 4, 7, 9, 2, 4, 0, 3, 2, 7, 3, 0, 5, 7, 8, 8, 4, 6, 3, 4, 8, 1, 1, 5, 9, 7, 1, 3, 1, 0, 2, 3, 3, 3, 5, 6, 9, 0, 4, 7
Offset: 0

Views

Author

Roland Kneer, Jul 01 2013

Keywords

Comments

Group the terms 2 by 2 to get the first 11 Fibonacci numbers (A000045): 00 01 01 02 03 05 08 13 21 34 55 (89, 144, 233, ...).

Examples

			0.00010102030508132134559046368320032326497626022830588...
		

Crossrefs

Programs

  • Maple
    Digits := 140; evalf(1/9899);
  • Mathematica
    First[RealDigits[1/9899, 10, 100, -1]] (* Paolo Xausa, Jun 16 2024 *)

Formula

Equals Sum_{i>=0} Fibonacci(i)/100^(i+1).

A021182 Decimal expansion of 1/178.

Original entry on oeis.org

0, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A021093.

Programs

  • Maple
    Digits:=100: evalf(1/178); # Wesley Ivan Hurt, Jan 24 2017
  • Mathematica
    Join[{0,0},RealDigits[1/178,10,120][[1]]] (* or *) PadRight[{0},120,{5,0,5,6,1,7,9,7,7,5,2,8,0,8,9,8,8,7,6,4,0,4,4,9,4,3,8,2,0,2,2,4,7,1,9,1,0,1,1,2,3,5,9,5}] (* Harvey P. Dale, Sep 25 2017 *)
  • PARI
    1/178. \\ Charles R Greathouse IV, Dec 05 2011

A021360 Decimal expansion of 1/356.

Original entry on oeis.org

0, 0, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6
Offset: 0

Views

Author

Keywords

Examples

			0.002808988764044943820224719101123595505617977528...
		

Crossrefs

Cf. A021093.

Programs

A021449 Decimal expansion of 1/445.

Original entry on oeis.org

0, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1
Offset: 0

Views

Author

Keywords

Comments

Expansion in any base b >= 3 of 2/(b(b-1)(b+1)) = 2/(b^3-b). E.g., 1/12 in base 3, 1/30 in base 4, 1/60 in base 5, etc. - Franklin T. Adams-Watters, Nov 07 2006

Crossrefs

Programs

Formula

From Chai Wah Wu, May 08 2025: (Start)
a(n) = a(n-1) - a(n-22) + a(n-23) for n > 23.
G.f.: x^2*(-2*x^21 - 6*x^20 + 5*x^19 - x^18 - 5*x^17 + 5*x^16 + 4*x^14 - 4*x^13 - 2*x^12 - x^11 - x^10 - x^8 + x^7 + 8*x^6 - 8*x^5 + 6*x^4 - 3*x^3 - 2*x^2 - 2)/(x^23 - x^22 + x - 1). (End)

A021716 Decimal expansion of 1/712.

Original entry on oeis.org

0, 0, 1, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			0.0014044943820224719101123595505617977528089887640449...
		

Crossrefs

Cf. A021093.

Programs

Formula

From Chai Wah Wu, Apr 22 2024: (Start)
a(n) = a(n-1) - a(n-22) + a(n-23) for n > 25.
G.f.: x^2*(-5*x^23 - 2*x^22 - x^21 - x^19 + x^18 + 8*x^17 - 8*x^16 + 6*x^15 - 3*x^14 - 2*x^13 - 2*x^11 + 2*x^10 + 6*x^9 - 5*x^8 + x^7 + 5*x^6 - 5*x^5 - 4*x^3 + 4*x^2 - 3*x - 1)/(x^23 - x^22 + x - 1). (End)

A177940 Decimal expansion of 190/89.

Original entry on oeis.org

2, 1, 3, 4, 8, 3, 1, 4, 6, 0, 6, 7, 4, 1, 5, 7, 3, 0, 3, 3, 7, 0, 7, 8, 6, 5, 1, 6, 8, 5, 3, 9, 3, 2, 5, 8, 4, 2, 6, 9, 6, 6, 2, 9, 2, 1, 3, 4, 8, 3, 1, 4, 6, 0, 6, 7, 4, 1, 5, 7, 3, 0, 3, 3, 7, 0, 7, 8, 6, 5, 1, 6, 8, 5, 3, 9, 3, 2, 5, 8, 4, 2, 6, 9, 6, 6, 2, 9, 2, 1, 3, 4, 8, 3, 1, 4, 6, 0, 6, 7, 4, 1, 5, 7, 3
Offset: 1

Views

Author

Mark Dols, May 15 2010

Keywords

Examples

			The sum of the shifted Lucas numbers begins:
2
0.1
0.03
0.004
0.0007
0.00011
0.000018
.......29
---------- +
2.134831...
		

Crossrefs

Programs

Formula

equals sum_{n=0..infinity} A000032(n)/10^n.

Extensions

Keyword:cons added, formula and offset adjusted - R. J. Mathar, May 19 2010
Showing 1-10 of 12 results. Next