A022554
a(n) = Sum_{k=0..n} floor(sqrt(k)).
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 31, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280
Offset: 0
Michel Tixier (tixier(AT)dyadel.net)
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 11*x^7 + 13*x^8 + 16*x^9 + ...
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Edition, Addison-Wesley, 1994, Eq. 3.27 on page 87.
- D. E. Knuth, The Art of Computer Programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997, Ex. 43 of section 1.2.4.
- K. H. Rosen, Discrete Mathematics and Its Application, 6th Edition, McGraw-Hill, 2007, Ex. 25 of section 2.4.
-
[&+[Floor(Sqrt(k)): k in [0..n]]: n in [0..50]]; // G. C. Greubel, Feb 26 2018
-
seq(add(floor(sqrt(k)), k=0..n), n=0..59);
-
Accumulate[Floor[Sqrt[Range[0,60]]]] (* Harvey P. Dale, Feb 16 2011 *)
Table[Sum[Floor[Sqrt[i]], {i,0,n}], {n,0,50}] (* G. C. Greubel, Dec 22 2016 *)
-
a(n)=sum(k=1,n,sqrtint(k)) \\ Charles R Greathouse IV, Jan 12 2012
-
a(n)=my(k=sqrtint(n));k*(n-(2*k+5)/6*(k-1)) \\ Charles R Greathouse IV, Jan 12 2012
-
from math import isqrt
def A022554(n): return (m:=isqrt(n))*(m*(-(m<<1)-3)+6*n+5)//6 # Chai Wah Wu, Aug 03 2022
More terms from Yong Kong (ykong(AT)curagen.com), Mar 10 2001
A282168
a(n) is the minimal sum of a positive integer sequence of length n with no duplicate substrings (forward or backward) of length greater than 1.
Original entry on oeis.org
1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 25, 29, 33, 37, 41, 45, 49, 53, 57, 62, 67, 72, 77, 82, 87, 92, 97, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353
Offset: 1
[1,2,3,1,2] is invalid because the substring [1,2] appears twice.
[1,2,1] is invalid because the substring [1,2] appears twice (once forward and once backward).
a(1) = 1 via [1];
a(2) = 2 via [1,1];
a(3) = 4 via [1,1,2];
a(4) = 6 via [1,1,2,2];
a(5) = 8 via [1,1,2,3,1];
a(6) = 10 via [1,1,2,2,3,1];
a(7) = 13 via [1,1,2,2,3,3,1];
a(8) = 16 via [1,1,2,2,3,1,4,2];
a(9) = 19 via [1,1,2,2,3,3,1,4,2];
a(10) = 22 via [1,1,2,2,3,1,4,2,5,1];
a(11) = 25 via [1,1,2,2,3,3,1,4,2,5,1];
a(12) = 29 via [1,1,2,2,3,3,1,4,4,2,5,1].
Edited and terms a(13) onward added by
Max Alekseyev, Feb 05 2025
A174058
Round(Sum_{k=1..n} {sqrt(k)}).
Original entry on oeis.org
0, 1, 2, 4, 6, 8, 11, 13, 16, 19, 22, 26, 29, 33, 37, 40, 44, 49, 53, 57, 62, 66, 71, 76, 81, 86, 91, 96, 101, 107, 112, 118, 123, 129, 135, 141, 147, 153, 159, 165, 172, 178, 184, 191, 198, 204, 211, 218, 225, 232, 239, 246, 253, 261, 268, 275, 283, 290, 298, 306
Offset: 1
-
s=0;lst={};Do[s+=Sqrt[n];AppendTo[lst,Round[s]],{n,0,6!}];lst
Accumulate[Sqrt[Range[0,60]]]//Round (* Harvey P. Dale, Oct 16 2018 *)
A137262
Floor of sum of the first 10^n square roots.
Original entry on oeis.org
1, 22, 671, 21097, 666716, 21082008, 666667166, 21081852648, 666666671666, 21081851083600, 666666666716666, 21081851067947309, 666666666667166666, 21081851067790776685, 666666666666671666666, 21081851067789211358047, 666666666666666716666666, 21081851067789195704773173
Offset: 0
The first 10^0 square roots is 1. The sum of the first 10^1 square roots is 22.468278186... . So 22 is the second entry in the sequence.
-
a[n_] := Floor[Sum[Sqrt[j],{j,10^n}]];Array[a,17,0] (* James C. McMahon, May 17 2025 *)
a[n_] := Floor[HarmonicNumber[10^n, -1/2]]; Array[a, 20, 0] (* Amiram Eldar, Jul 18 2025 *)
-
g2(n,p=2) = for(j=0,n,s=0;for(x=0,10^j,s+=x^(1/p)); print1(floor(s)", "))
A174059
a(n) = ceiling(Sum_{k=1..n} sqrt(k)).
Original entry on oeis.org
0, 1, 3, 5, 7, 9, 11, 14, 17, 20, 23, 26, 30, 33, 37, 41, 45, 49, 53, 58, 62, 67, 71, 76, 81, 86, 91, 96, 102, 107, 113, 118, 124, 130, 135, 141, 147, 153, 160, 166, 172, 179, 185, 192, 198, 205, 212, 219, 225, 232, 240, 247, 254, 261, 269, 276, 283, 291, 299, 306
Offset: 0
-
map(ceil,ListTools:-PartialSums([seq((sqrt(k)),k=0..100)])); # Robert Israel, May 06 2019
-
s=0;lst={};Do[s+=Sqrt[n];AppendTo[lst,Ceiling[s]],{n,0,6!}];lst
Ceiling[Accumulate[Sqrt[Range[0,60]]]] (* Harvey P. Dale, Aug 29 2016 *)
A225154
Floor(Sum_{i=1..n} (Sum_{j=1..i} sqrt(1/j))).
Original entry on oeis.org
1, 2, 4, 7, 11, 14, 18, 23, 27, 32, 38, 43, 49, 55, 62, 68, 75, 82, 90, 97, 105, 113, 121, 130, 138, 147, 156, 166, 175, 185, 194, 204, 214, 225, 235, 246, 257, 267, 279, 290, 301, 313, 325, 336, 349, 361, 373, 385, 398
Offset: 1
-
for(n=1,100,print1(floor(sum(i=1,n,sum(j=1,i,1/sqrt(j))))","))
-
a(n)=sum(j=1,n,(n+1-j)/sqrt(j))\1 \\ Charles R Greathouse IV, May 02 2013
A338277
Greatest integer whose square root is less than or equal to Sum_{j=0..n} sqrt(j).
Original entry on oeis.org
0, 1, 5, 17, 37, 70, 117, 181, 265, 372, 504, 664, 855, 1079, 1339, 1637, 1977, 2361, 2791, 3271, 3802, 4388, 5032, 5735, 6501, 7333, 8232, 9202, 10245, 11364, 12562, 13841, 15204, 16654, 18193, 19824, 21549, 23372, 25295, 27321, 29451, 31690, 34040, 36502, 39081, 41778, 44597, 47539, 50609, 53807
Offset: 0
-
f:= n -> floor(add(sqrt(i),i=1..n)^2):
map(f, [$0..100]); # Robert Israel, Oct 28 2020
-
a[n_] := Floor[(Sum[ Sqrt[k], {k, 0, n}])^2]; Array[a, 50, 0]
-
a(n) = floor(sum(j=0, n, sqrt(j))^2); \\ Michel Marcus, Oct 26 2020
A352077
a(n) = floor( Sum_{k=1..n} k^(1/3) ).
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 16, 19, 21, 23, 26, 28, 31, 33, 36, 39, 41, 44, 47, 50, 53, 56, 58, 61, 65, 68, 71, 74, 77, 80, 83, 87, 90, 93, 97, 100, 104, 107, 110, 114, 117, 121, 125, 128, 132, 136, 139, 143, 147, 150, 154, 158, 162, 166, 170, 173, 177, 181, 185, 189, 193, 197
Offset: 0
a(6) = 8 because 1^(1/3) + 2^(1/3) + 3^(1/3) + 4^(1/3) + 5^(1/3) + 6^(1/3) = 8.81667... .
-
a[n_] := Floor[ HarmonicNumber[n, -1/3]]; Array[ a, 66, 0]
-
a(n) = floor(sum(k=0, n, k^(1/3))); \\ Michel Marcus, Mar 02 2022
A025199
a(n) = floor(floor(S2)/floor(S1)), where S2 and S1 are, respectively, the 2nd and first elementary symmetric functions of {sqrt(k), k = 1,2,...,n}.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 15, 17, 18, 20, 23, 25, 27, 29, 31, 34, 36, 38, 41, 43, 46, 48, 51, 54, 57, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 90, 93, 96, 99, 103, 106, 110, 113, 116, 120, 124, 127, 131, 135, 139, 142, 146, 150
Offset: 2
A025200
a(n) = floor(floor(S3)/floor(S1)), where S3 and S1 are, respectively, the 3rd and first elementary symmetric functions of {sqrt(k), k = 1,2,...,n}.
Original entry on oeis.org
0, 2, 5, 11, 18, 28, 42, 60, 82, 107, 140, 176, 218, 267, 324, 389, 455, 538, 622, 726, 830, 945, 1072, 1211, 1363, 1513, 1692, 1868, 2076, 2282, 2502, 2759, 3013, 3283, 3572, 3854, 4178, 4523, 4860, 5244, 5621, 6048, 6467, 6907, 7370, 7890, 8400, 8896, 9454, 10037, 10647, 11241, 11903, 12594, 13268, 13968
Offset: 2
Showing 1-10 of 12 results.
Comments