cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A047891 Number of planar rooted trees with n nodes and tricolored end nodes.

Original entry on oeis.org

1, 3, 12, 57, 300, 1686, 9912, 60213, 374988, 2381322, 15361896, 100389306, 663180024, 4421490924, 29712558576, 201046204173, 1368578002188, 9366084668802, 64403308499592, 444739795023054, 3082969991029800
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A025231.
Also number of lattice paths from (0,0) to (n-1,n-1), with steps (1,0),(0,1) and (1,1), that never rise above the line y=x and the steps (1,1) are colored red or blue. - Emeric Deutsch, May 28 2003
The Hankel transform (see A001906 for definition) of this sequence forms A049656(n+1) = [1, 3, 27, 729, 59049, 14348907, ...]. - Philippe Deléham, Aug 29 2006
With a(0)=0, this is the series reversion of x(1-x)/(1+2x). - Paul Barry, Oct 18 2009
Row sums of the Riordan matrix A121576. - Emanuele Munarini, May 18 2011

Examples

			G.f. = x + 3*x^2 + 12*x^3 + 57*x^4 + 300*x^5 + 1686*x^6 + 9912*x^7 + ...
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x-Sqrt(1-8*x+4*x^2))/(2*x))); // G. C. Greubel, Feb 10 2018
  • Maple
    A047891_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 3*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a,list)end: A047891_list(20); # Peter Luschny, May 19 2011
  • Mathematica
    CoefficientList[Series[(1-2x-Sqrt[1-8x+4x^2])/(2x),{x,0,100}],x] (* Emanuele Munarini, May 18 2011 *)
    a[ n_] := SeriesCoefficient[(1 - 2 x - Sqrt[1 - 8 x + 4 x^2]) / 2, {x, 0, n}]; (* Michael Somos, Apr 10 2014 *)
    Table[2^(n-1) (LegendreP[n, 2] - LegendreP[n-2, 2])/(2n-1), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
    Table[3 Hypergeometric2F1[1-n, 2-n, 2, 3] - 2 KroneckerDelta[n-1], {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*n-k+1,n+1)*(2*n^2-6*(k-1)*n+3*k^2-9*k+4)/((n-k+2)*(n-k+1))*2^k,k,0,n)/2,n,0,24); /* Emanuele Munarini, May 18 2011 */
    
  • PARI
    a(n)=if(n<2,n==1,n--;sum(k=0,n,3^k*binomial(n,k)*binomial(n,k-1))/n)
    
  • PARI
    x='x+O('x^100); Vec((1-2*x-sqrt(1-8*x+4*x^2))/2) \\ Altug Alkan, Nov 02 2015
    

Formula

G.f.: (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/2.
For n>0, a(n+1) = (1/n)*Sum_{k=0..n} 3^k*C(n, k)*C(n, k-1) - Benoit Cloitre, May 10 2003
a(1)=1, a(n) = 2*a(n-1) + Sum_{i=1..(n-1)} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
The Hankel transform (see A001906 for definition) of this sequence form A049656(n+1)= [1, 3, 27, 729, 59049, 14348907, ...]. - Philippe Deléham, Aug 29 2006
2*a(n) = A054872(n+1). - Philippe Deléham, Aug 17 2007
From Paul Barry, Feb 01 2009: (Start)
G.f.: x/(1-2x-x/(1-2x-x/(1-2x-x/(1-2x-x/(1-... (continued fraction);
a(n+1) = Sum_{k=0..n} C(n+k,2k)*2^(n-k)*A000108(k). (End)
G.f.: x/(1-3x/(1-x/(1-3x/(1-x/(1-3x/(1-x/(1-3x/(1-... (continued fraction). - Paul Barry, Oct 18 2009
a(1) = 1, for n>=1, a(n+1) = 3*A007564(n). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
From Emanuele Munarini, May 18 2011: (Start)
a(n+1) = (Sum_{k=0..n} binomial(n,k)*binomial(2*n-k+1,n+1)*(2*n^2-6*(k-1)*n+3*k^2-9*k+4)/((n-k+2)*(n-k+1))*2^k)/2.
D-finite with recurrence: (n+2)*(n+3)*a(n+3) - 6*(n+2)^2*a(n+2) - 12*(n)^2*a(n+1) + 8*n*(n-1)*a(n) = 0. (End)
G.f.: A(x) = (1-2*x-sqrt(4*x^2-8*x+1))/2 = 1 - G(0); G(k)= 1 + 2*x - 3*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
G.f.: x/W(0), where W(k)= k+1 - 2*x*(k+1) - x*(k+1)*(k+2)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
From Vladimir Reshetnikov, Nov 01 2015: (Start)
a(n) = 2^(n-1)*(LegendreP_n(2) - LegendreP_{n-2}(2))/(2n-1).
a(n) = 3*hypergeom([1-n,2-n], [2], 3) - 2*0^(n-1). (End)
a(n) = 2^(n-1)*hypergeom([1-n, n], [2], -1/2). - Peter Luschny, Nov 25 2020
a(n) ~ 3^(1/4) * (1 + sqrt(3))^(2*n - 1) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 31 2021
D-finite with recurrence n*a(n) +4*(-2*n+3)*a(n-1) +4*(n-3)*a(n-2)=0. - R. J. Mathar, Aug 01 2022

Extensions

More terms from Christian G. Bower, Dec 11 1999

A103970 Expansion of (1 - sqrt(1 - 4*x - 12*x^2))/(2*x).

Original entry on oeis.org

1, 4, 8, 32, 128, 576, 2688, 13056, 65024, 330752, 1710080, 8962048, 47497216, 254132224, 1370849280, 7447117824, 40707293184, 223731253248, 1235630948352, 6853893292032, 38166664839168, 213288826699776, 1195775593807872, 6723691157127168, 37908469021409280, 214260335517892608, 1213784937073737728, 6890689428042285056
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Comments

Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x) -> (1+3x)g(x(1+3x)). In general, the image of the Catalan numbers under the mapping g(x) -> (1+i*x)g(x(1+i*x)) is given by a(n) = Sum_{k=0..n} i^(n-k)*C(k)*C(k+1,n-k).
Hankel transform is 4^C(n+1,2)*A128018(n). [Paul Barry, Nov 20 2009]
By following L. Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we also obtain (n+1)*C(n) - 2*a*(2*n-1)*C(n-1) + 4*(n-2)*(a^2-b)*C(n-2) = 0. In the present case, we also have the asymptotic result: a(n) ~ sqrt(4/3)*2^(n-1)*3^(n+1)/sqrt(Pi*n^3) for large n. - Richard Choulet, Dec 17 2009

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( (1-Sqrt(1-4*x-12*x^2))/(2*x) )); // G. C. Greubel, Mar 16 2019
    
  • Maple
    n:=30:a(0):=1:a(1):=4: k:=1: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
    taylor(((1-(1-4*z-12*z^2)^0.5)/(2*z)),z=0,32); # Richard Choulet, Dec 17 2009
  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1-4x-12x^2])/(2x), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 18 2017 *)
  • PARI
    my(x='x+O('x^35)); Vec((1-sqrt(1-4*x-12*x^2))/(2*x)) \\ G. C. Greubel, Mar 16 2019
    
  • Sage
    ((1-sqrt(1-4*x-12*x^2))/(2*x)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Mar 16 2019

Formula

G.f.: (1 - sqrt(1-4*x*(1+3*x)))/(2*x).
a(n) = Sum_{k=0..n} 3^(n-k)*C(k)*C(k+1, n-k).
D-finite with recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 12*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009

A103971 Expansion of (1 - sqrt(1 - 4*x - 16*x^2))/(2*x).

Original entry on oeis.org

1, 5, 10, 45, 190, 930, 4660, 24445, 131190, 719830, 4013260, 22684370, 129661740, 748252580, 4353379560, 25508284445, 150392391590, 891549228430, 5310994644060, 31775749689670, 190860711108740, 1150473009844380
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Comments

Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x) -> (1+4x)g(x(1+4x)). In general, the image of the Catalan numbers under the mapping g(x)->(1+i*x)g(x(1+i*x)) is given by a(n) = Sum_{k=0..n} i^(n-k)C(k)C(k+1,n-k).
More generally, the sequence C for which C(0)=a, C(1)=b and C(n+1) = sum(C(k)*C(n-k),k=0..n) has the following g.f. f: f(z) = (1-sqrt(1-4*z*(a-(a^2-b)*z)))/(2*z). We obtain: C(n)=(sum(-1)^(p-1)*2^{n-p}a^{n-2*p-1}*(a^2-b)^p*((2*n-2*p-1)*...*5*3*1/(p!*(n-2*p+1)!)),p=0..floor((n+1)/2)). By following Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we obtain also: (n+1)*C(n) - 2*a*(2*n-1)*C(n-1) + 4*(n-2)*(a^2-b)*C(n-2) = 0. - Richard Choulet, Dec 17 2009

Crossrefs

Programs

  • Maple
    n:=30:a(0):=1:a(1):=5: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x-16x^2])/(2x),{x,0,30}],x] (* Harvey P. Dale, Apr 02 2012 *)

Formula

G.f.: (1-sqrt(1-4*x*(1+4*x)))/(2*x).
a(n) = Sum_{k=0..n} 4^(n-k)*C(k)*C(k+1, n-k).
Another recurrence formula: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 16*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009
a(n) ~ sqrt(10 + 2*sqrt(5))*(2 + 2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
Equivalently, a(n) ~ 5^(1/4) * 2^(2*n) * phi^(n + 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021

A103972 Expansion of (1-sqrt(1-4*x-20*x^2))/(2*x).

Original entry on oeis.org

1, 6, 12, 60, 264, 1392, 7392, 41424, 236640, 1384512, 8224896, 49554816, 301884672, 1856878080, 11514915840, 71915838720, 451938731520, 2855705994240, 18132621772800, 115637702461440, 740356410961920, 4756888756101120, 30662391191715840, 198229520200704000, 1285001080928845824
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Comments

Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x)->(1+5x)g(x(1+5x)). In general, the image of the Catalan numbers under the mapping g(x)->(1+i*x)g(x(1+i*x)) is given by a(n)=sum{k=0..n, i^(n-k)C(k)C(k+1,n-k)}.
More generally, the sequence C for which C(0)=a, C(1)=b and C(n+1)=sum(C(k)*C(n-k),k=0..n) has the following G.f f: f(z)= (1-sqrt(1-4*z*(a-(a^2-b)*z)))/(2*z). We obtain: C(n)=(sum(-1)^(p-1)*2^{n-p}a^{n-2*p-1}*(a^2-b)^p*((2*n-2*p-1)*...*5*3*1/(p!*(n-2*p+1)!)),p=0..floor((n+1)/2)). By following L. Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we obtain also: (n+1)*C(n)-2*a*(2*n-1)*C(n-1)+4*(n-2)*(a^2-b)*C(n-2)=0. - Richard Choulet, Dec 17 2009

Crossrefs

Programs

  • Maple
    n:=30:a(0):=1:a(1):=6 :for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x-20*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-sqrt(1-4*x-20*x^2))/(2*x)) \\ Joerg Arndt, May 13 2013

Formula

G.f.: (1-sqrt(1-4*x*(1+5*x)))/(2*x).
a(n) = Sum_{k=0..n} 5^(n-k)*C(k)*C(k+1, n-k).
Another recurrence formula: (n+1)*a(n)=2*(2n-1)*a(n-1)+20*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009
a(n) ~ sqrt(12+2*sqrt(6))*(2+2*sqrt(6))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012

A379103 Expansion of (1-3*x-sqrt(9*x^2-14*x+1))/4.

Original entry on oeis.org

0, 1, 5, 35, 295, 2765, 27705, 290535, 3148995, 34995065, 396602605, 4566227435, 53259218495, 627982592965, 7473163652705, 89640387354735, 1082664905352795, 13155505626756465, 160709002086562005, 1972595405313408435, 24315686632846439895, 300886761671728853565, 3736205372071338170505, 46540791299676591116535
Offset: 0

Views

Author

Nathaniel Johnston, Dec 15 2024

Keywords

Comments

Problem A6 on the 2024 William Lowell Putnam Mathematical Competition was to compute the Hankel transform of this sequence, which is A110147.
Given constants X and Y, let A(x) = (1 - x*(X - Y) - sqrt(1 - 2*x*(X + Y) + x^2*(X - Y)^2))/(2*Y) = x*(1) + x^2*(X) + x^3*X*(X + Y) + x^4*X*(X^2 + 3*X*Y + Y^2) + ... where the coefficients of A(x) is the Narayana triangle A090181. A(x) satisfies 0 = x - A(x)*(1 - x*(X-Y)) + A(x)^2*Y. The Hankel transform of the coefficients 1, X, X*(X + Y), ... is the sequence 1, (X*Y), (X*Y)^2, ... while the Hankel transform of X, X*(X + Y), X*(X^2 + 3*X*Y + Y^2), ... is the sequence X, X^3*Y, X^6*Y^3, X^10*Y^6, .... In the case of this sequence, X = 5 and Y = 2. - Michael Somos, Apr 26 2025

Examples

			G.f. = x + 5*x^2 + 35*x^3 + 295*x^4 + 2765*x^5 + 27705*x^6 + ... - _Michael Somos_, Apr 26 2025
		

Crossrefs

Programs

  • MATLAB
    a = 3;b = 2;c(1) = 1;last_val = 16;for j = 2:last_val
    c(j) = a*c(j-1) + b*sum(c(1:j-1).*fliplr(c(1:j-1)));
    end
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 - 3*x - Sqrt[1 - 14*x + 9*x^2])/4, {x, 0, n}]; (* Michael Somos, Apr 26 2025 *)
    a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - (X-Y)*x - Y*#)&, O[x], n], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
    a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - X*x/(1 - Y*#))&, O[x], Ceiling[n/2]], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
  • PARI
    my(x='x+O('x^33)); concat([0],Vec((1-3*x-sqrt(9*x^2-14*x+1))/4)) \\ Joerg Arndt, Dec 15 2024
    
  • PARI
    a(n) = my(A = O(x)); for(k=1, n, A = x + 3*x*A + 2*A^2); polcoeff(A, n); /* Michael Somos, Apr 26 2025 */
    
  • PARI
    a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, n, A = x/(1 - (X-Y)*x - Y*A)); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */
    
  • PARI
    a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, (n+1)\2, A = x/(1 - X*x/(1 - Y*A))); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */

Formula

a(0) = 0, a(1) = 1, a(n) = 3*a(n-1) + 2*Sum_{k=0..n} a(k)*a(n-k) for n >= 2.
G.f.: (1-3*x-sqrt(9*x^2-14*x+1))/4.
G.f.: x/(1-5*x/(1-2*x/(1-5*x/(1-2*x/(1-5*x/(...)))))). - Thomas Scheuerle, Feb 28 2025
a(n) = (1/4)*(-1)^(n+1) * Sum_{k=0..n} binomial(1/2,k) * binomial(1/2,n-k) * (7+2*sqrt(10))^k * (7-2*sqrt(10))^(n-k) for n >= 2. - Ehren Metcalfe, Feb 26 2025
a(n) ~ 5^(1/4) * (7 + 2*sqrt(10))^(n - 1/2) / (2^(7/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2025
The g.f. A(x) satisfies 0 = x - (1 - 3*x)*A(x) + 2*A(x)^2 and A(x) = x + 3*x*A(x) + 2*A(x)^2. - Michael Somos, Apr 26 2025
Showing 1-5 of 5 results.