cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028230 Bisection of A001353. Indices of square numbers which are also octagonal.

Original entry on oeis.org

1, 15, 209, 2911, 40545, 564719, 7865521, 109552575, 1525870529, 21252634831, 296011017105, 4122901604639, 57424611447841, 799821658665135, 11140078609864049, 155161278879431551, 2161117825702177665, 30100488280951055759, 419245718107612602961, 5839339565225625385695
Offset: 1

Views

Author

Keywords

Comments

Chebyshev S-sequence with Diophantine property.
4*b(n)^2 - 3*a(n)^2 = 1 with b(n) = A001570(n), n>=0.
y satisfying the Pellian x^2 - 3*y^2 = 1, for even x given by A094347(n). - Lekraj Beedassy, Jun 03 2004
a(n) = L(n,-14)*(-1)^n, where L is defined as in A108299; see also A001570 for L(n,+14). - Reinhard Zumkeller, Jun 01 2005
Product x*y, where the pair (x, y) solves for x^2 - 3y^2 = -2, i.e., a(n) = A001834(n)*A001835(n). - Lekraj Beedassy, Jul 13 2006
Numbers n such that RootMeanSquare(1,3,...,2*A001570(k)-1) = n. - Ctibor O. Zizka, Sep 04 2008
As n increases, this sequence is approximately geometric with common ratio r = lim(n -> oo, a(n)/a(n-1)) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 15 2011

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.

Crossrefs

Programs

  • GAP
    a:=[1,15];; for n in [3..30] do a[n]:=14*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    I:=[1,15]; [n le 2 select I[n] else 14*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 06 2019
    
  • Maple
    seq(coeff(series((1+x)/(1-14*x+x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 06 2019
  • Mathematica
    LinearRecurrence[{14, - 1}, {1, 15}, 17] (* Ant King, Nov 15 2011 *)
    CoefficientList[Series[(1+x)/(1-14x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
  • PARI
    Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 16 2014
    
  • PARI
    isok(n) = ispolygonal(n^2, 8); \\ Michel Marcus, Jul 09 2017
    
  • Sage
    [(lucas_number2(n,14,1)-lucas_number2(n-1,14,1))/12 for n in range(1, 18)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 2*A001921(n)+1.
a(n) = 14*a(n-1) - a(n-2) for n>1.
a(n) = S(n, 14) + S(n-1, 14) = S(2*n, 4) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0, S(n, 14) = A007655(n+1) and S(n, 4) = A001353(n+1).
G.f.: x*(1+x)/(1-14*x+x^2).
a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := 2+sqrt(3) and am := 2-sqrt(3).
a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*16^(n-k), n>=0.
a(n) = sqrt((4*A001570(n-1)^2 - 1)/3).
a(n) ~ 1/6*sqrt(3)*(2 + sqrt(3))^(2*n-1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
4*a(n+1) = (A001834(n))^2 + 4*(A001835(n+1))^2 - (A001835(n))^2. E.g. 4*a(3) = 4*209 = 19^2 + 4*11^2 - 3^2 = (A001834(2))^2 + 4*(A001835(3))^2 - (A001835(2))^2. Generating floretion: 'i + 2'j + 3'k + i' + 2j' + 3k' + 4'ii' + 3'jj' + 4'kk' + 3'ij' + 3'ji' + 'jk' + 'kj' + 4e. - Creighton Dement, Dec 04 2004
a(n) = f(a(n-1),7) + f(a(n-2),7), where f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. - Marcos Carreira, Dec 27 2006
From Ant King, Nov 15 2011: (Start)
a(n) = 1/6 * sqrt(3) * ( (tan(5*Pi/12)) ^ (2n-1) - (tan(Pi/12)) ^ (2n-1) ).
a(n) = floor (1/6 * sqrt(3) * (tan(5*Pi/12)) ^ (2n-1)). (End)
a(n) = A001353(n)^2-A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020
E.g.f.: 1 - exp(7*x)*(3*cosh(4*sqrt(3)*x) - 2*sqrt(3)*sinh(4*sqrt(3)*x))/3. - Stefano Spezia, Dec 12 2022
a(n) = sqrt(A036428(n)). - Bernard Schott, Dec 19 2022

Extensions

Additional comments from Wolfdieter Lang, Nov 29 2002
Incorrect recurrence relation deleted by Ant King, Nov 15 2011
Minor edits by Vaclav Kotesovec, Jan 28 2015