A028329 Twice central binomial coefficients.
2, 4, 12, 40, 140, 504, 1848, 6864, 25740, 97240, 369512, 1410864, 5408312, 20801200, 80233200, 310235040, 1202160780, 4667212440, 18150270600, 70690527600, 275693057640, 1076515748880, 4208197927440, 16466861455200, 64495207366200, 252821212875504, 991837065896208
Offset: 0
References
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Crossrefs
Programs
-
Magma
[2*(n+1)*Catalan(n): n in [0..30]]; // G. C. Greubel, Jul 13 2024
-
Maple
seq(add(binomial(2*n,n),k=1..2),n=0..23); # Zerinvary Lajos, Dec 14 2007
-
Mathematica
Table[2Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Aug 08 2011 *)
-
PARI
a(n)=2*binomial(2*n,n)
-
SageMath
[2*binomial(2*n,n) for n in range(31)] # G. C. Greubel, Jul 13 2024
Formula
G.f.: 2/sqrt(1 - 4*x).
a(n) = 2*A000984(n).
a(n) = 2 * binomial(2*n, n).
G.f.: G(0), where G(k)= 1 + 1/(1 - 2*x*(2*k + 1)/(2*x*(2*k + 1) + (k + 1)/ G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
D-finite with recurrence: n*a(n) + 2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
E.g.f.: 2*exp(2*x)*BesselI(0, 2*x). - Stefano Spezia, May 11 2024
Extensions
Edited by Michael Somos, Sep 13 2003
Comments