A028362 Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.
1, 3, 15, 135, 2295, 75735, 4922775, 635037975, 163204759575, 83724041661975, 85817142703524375, 175839325399521444375, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375
Offset: 1
Examples
G.f. = x + 3*x^2 + 15*x^3 + 135*x^4 + 2295*x^5 + 75735*x^6 + 4922775*x^7 + ...
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 630.
Links
- T. D. Noe, Table of n, a(n) for n = 1..50
- C. Bachoc and P. Gaborit, On extremal additive F_4 codes of length 10 to 18, J. Théorie Nombres Bordeaux, 12 (2000), 255-271.
- Steven T. Dougherty and Esengül Saltürk, The neighbor graph of binary self-orthogonal codes, Adv. Math. Comm. (2024). See p. 6.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
Crossrefs
Programs
-
Magma
[1] cat [&*[ 2^k+1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
-
Maple
seq(mul(1 + 2^j, j = 1..n-1), n = 1..20); # G. C. Greubel, Jun 06 2020
-
Mathematica
Table[Product[2^i+1,{i,n-1}],{n,15}] (* or *) FoldList[Times,1, 2^Range[15]+1] (* Harvey P. Dale, Nov 21 2011 *) Table[QPochhammer[-2, 2, n - 1], {n, 15}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
-
PARI
{a(n)=polcoeff(sum(m=0,n,2^(m*(m-1)/2)*x^m/prod(k=0,m-1,1-2^k*x+x*O(x^n))),n)} \\ Paul D. Hanna, Sep 16 2009
-
PARI
{a(n) = if( n<1, 0 , prod(k=1, n-1, 2^k + 1))}; /* Michael Somos, Jan 28 2018 */
-
PARI
{a(n) = sum(k=0, n-1, 2^(k*(k+1)/2) * prod(j=1, k, (2^(n-j) - 1) / (2^j - 1)))}; /* Michael Somos, Jan 28 2018 */
-
Python
for n in range(2,40,2): product = 1 for i in range(1,n//2-1 + 1): product *= (2**i+1) print(product) # Nathan J. Russell, Mar 01 2016
-
Python
from math import prod def A028362(n): return prod((1<Chai Wah Wu, Jun 20 2022
-
Sage
from ore_algebra import * R.
= QQ['x'] A. = OreAlgebra(R, 'Qx', q=2) print((Qx - x - 1).to_list([0,1], 10)) # Ralf Stephan, Apr 24 2014 -
Sage
from sage.combinat.q_analogues import q_pochhammer [q_pochhammer(n-1,-2,2) for n in (1..20)] # G. C. Greubel, Jun 06 2020
-
Scheme
;; With memoization-macro definec. (define (A028362 n) (A028362off0 (- n 1))) (definec (A028362off0 n) (if (zero? n) 1 (+ (A028362off0 (- n 1)) (* (expt 2 n) (A028362off0 (- n 1)))))) ;; Antti Karttunen, Apr 15 2017
Formula
a(n) = Product_{i=1..n-1} (2^i+1).
Letting a(0)=1, we have a(n) = Sum_{k=0..n-1} 2^k*a(k) for n>0. a(n) is asymptotic to c*sqrt(2)^(n^2-n) where c=2.384231029031371724149899288.... = A079555 = Product_{k>=1} (1 + 1/2^k). - Benoit Cloitre, Jan 25 2003
G.f.: Sum_{n>=1} 2^(n*(n-1)/2) * x^n/(Product_{k=0..n-1} (1-2^k*x)). - Paul D. Hanna, Sep 16 2009
a(n) = 2^(binomial(n,2) - 1)*(-1; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
From Antti Karttunen, Apr 15 2017: (Start)
a(n) = b(n-1), where b(0) = 1, and for n > 0, b(n) = b(n-1) + (2^n)*b(n-1).
a(n) = Sum_{i=1..A000124(n-1)} A053632(n-1,i-1)*(2^(i-1)) [where the indexing of both rows and columns of irregular table A053632(row,col) is considered to start from zero].
(End)
G.f. A(x) satisfies: A(x) = x * (1 + A(2*x)) / (1 - x). - Ilya Gutkovskiy, Jun 06 2020
Conjectural o.g.f. as a continued fraction of Stieltjes type (S-fraction):
1/(1 - 3*x/(1 - 2*x/(1 - 10*x/(1 - 12*x/(1 - 36*x/(1 - 56*x/(1 - 136*x/(1 - 240*x/(1 - ... - 2^(n-1)*(2^n + 1)*x/(1 - 2^n*(2^n - 1)*x/(1 - ... ))))))))))). - Peter Bala, Sep 27 2023
Comments