cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A038599 Numbers k such that k^3 - 2 is prime.

Original entry on oeis.org

9, 15, 19, 27, 31, 37, 67, 91, 99, 109, 121, 129, 135, 145, 151, 165, 187, 189, 201, 207, 211, 217, 241, 259, 265, 267, 277, 279, 289, 319, 355, 357, 367, 369, 387, 391, 411, 417, 427, 435, 439, 445, 457, 459, 477, 489, 511, 525, 549, 555, 561, 615, 619, 621
Offset: 1

Views

Author

Keywords

Examples

			15^3 - 2 = 3373 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

Formula

a(n) = (A038600(n)+2)^(1/3). - Zak Seidov, May 10 2016

Extensions

Missed term, 207, and more terms added by Zak Seidov, Mar 14 2009

A108701 Values of n such that n^2-2 and n^2+2 are both prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 117, 237, 273, 303, 309, 387, 429, 441, 447, 513, 561, 573, 609, 807, 897, 1035, 1071, 1113, 1143, 1233, 1239, 1311, 1563, 1611, 1617, 1737, 1749, 1827, 1839, 1953, 2133, 2211, 2283, 2589, 2715, 2721, 2955, 3081, 3093, 3453, 3549, 3555, 3621, 3723, 3807
Offset: 1

Views

Author

John L. Drost, Jun 19 2005

Keywords

Comments

Since x^2 + 2 is divisible by 3 unless x is divisible by 3, all elements are 3 mod 6.
Intersection of A067201 and A028870. - Robert Israel, Sep 11 2014

Examples

			21 is on the list since 21^2 - 2 = 439 and 21^2 + 2 = 443 are primes.
		

References

  • David Wells, Prime Numbers, John Wiley and Sons, 2005, p. 219 (article:'Siamese primes')

Crossrefs

Programs

  • Magma
    [n: n in [3..3600 by 6] | IsPrime(n^2-2) and IsPrime(n^2+2)];  // Bruno Berselli, Apr 15 2011
    
  • Maple
    select(n -> isprime(n^2-2) and isprime(n^2+2), [seq(6*i+3,i=0..1000)]); # Robert Israel, Sep 11 2014
  • Mathematica
    Select[Range[5000], PrimeQ[#^2 - 2] && PrimeQ[#^2 + 2] &] (* Alonso del Arte, Sep 11 2014 *)
  • PARI
    is(n)=isprime(n^2-2)&&isprime(n^2+2) \\ Charles R Greathouse IV, Jul 02 2013

Extensions

Terms corrected by Charles R Greathouse IV, Sep 11 2014

A153974 Numbers n such that n^3 - 3 is prime.

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 26, 34, 38, 40, 74, 80, 106, 110, 116, 124, 136, 158, 178, 184, 190, 206, 224, 230, 238, 256, 274, 280, 316, 320, 338, 340, 386, 410, 428, 446, 458, 464, 470, 484, 496, 530, 544, 550, 556, 590, 626, 634, 644, 646, 674, 710, 718, 728, 730
Offset: 1

Views

Author

Keywords

Comments

2^3 - 3 = 5 is prime, 4^3 - 3 = 61 is prime, ...

Crossrefs

Programs

  • Magma
    [n: n in [2..500] | IsPrime(n^3-3)]; // Vincenzo Librandi, Nov 26 2010
    
  • Mathematica
    a[n_]:=n^x-y;lst={};x=3;y=3;Do[If[PrimeQ[a[n]],AppendTo[lst,n]],{n,0,6!}];lst
    Select[Range[2, 1000], PrimeQ[#^3 - 3] &] (* G. C. Greubel, Sep 01 2016 *)
  • PARI
    is(n)=isprime(n^3-3) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

First two terms 0,1, removed by Zak Seidov, Mar 14 2009

A028874 Primes of form k^2 - 3.

Original entry on oeis.org

13, 61, 97, 193, 397, 673, 1021, 1153, 1597, 1933, 2113, 3361, 4093, 4621, 6397, 7393, 7741, 8461, 9601, 12097, 12541, 13921, 15373, 16381, 18493, 19597, 20161, 21313, 26893, 29581, 36097, 37633, 40801, 42433, 43261, 47521, 48397
Offset: 1

Views

Author

Keywords

Comments

Also primes equal to the product of two consecutive odd numbers (A000466) minus 2. - Giovanni Teofilatto, Feb 11 2010
All terms are of the form 6m + 1. - Zak Seidov, May 01 2014

Examples

			61 is prime and equal to 8^2 - 3, so it is in the sequence.
67 is prime but it's 8^2 + 3 = 9^2 - 14, so it is not in the sequence.
9^2 - 3 = 78 but it's composite, so it's not in the sequence either.
		

Crossrefs

Cf. A002476 (Primes of form 6m + 1), A028871, A028872, A028873.
Primes terms in A082109. Subsequence of A068228. - Klaus Purath, Jan 09 2023

Programs

Formula

A028872 INTERSECT A000040. - Klaus Purath, Dec 07 2020
a(n) = A028873(n)^2 - 3. - Amiram Eldar, Mar 01 2025

A153975 Values of n such that n^2-3 and n^2+3 are both prime.

Original entry on oeis.org

4, 8, 10, 14, 64, 92, 112, 140, 146, 172, 218, 298, 304, 322, 326, 340, 350, 356, 416, 440, 470, 508, 554, 560, 580, 626, 634, 652, 668, 686, 694, 704, 728, 736, 746, 770, 806, 818, 868, 892, 920, 1054, 1082, 1102, 1130, 1156, 1196, 1256, 1264, 1378, 1418
Offset: 1

Views

Author

Keywords

Comments

Intersection of A028873 and A049422. - Zak Seidov, Oct 12 2014

Examples

			4^2 - 3 = 13 and 4^2 + 3 = 19 are both primes, so 4 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1400] | IsPrime(n^2-3) and IsPrime(n^2+3)]; // Vincenzo Librandi, Oct 12 2014
    
  • Mathematica
    Select[Range[1500], PrimeQ[#^2 - 3] && PrimeQ[#^2 + 3] &] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    is(n) = isprime(n^2-3) && isprime(n^2+3); \\ Altug Alkan, Sep 01 2016

Extensions

Incorrect term 0 removed and Mma edited by Zak Seidov, Oct 12 2014

A163257 An interspersion: the order array of the even-numbered columns (after swapping the first two rows) of the double interspersion at A161179.

Original entry on oeis.org

1, 5, 2, 11, 6, 3, 19, 12, 8, 4, 29, 20, 15, 10, 7, 41, 30, 24, 18, 14, 9, 55, 42, 35, 28, 23, 17, 13, 71, 56, 48, 40, 34, 27, 22, 16, 89, 72, 63, 54, 47, 39, 33, 26, 21, 109, 90, 80, 70, 62, 53, 46, 38, 32, 25, 131, 110, 99, 88, 79, 69, 61, 52, 45, 37, 31, 155, 132, 120, 108
Offset: 1

Views

Author

Clark Kimberling, Jul 24 2009

Keywords

Comments

A permutation of the natural numbers.
Beginning at row 6, the columns obey a 3rd-order recurrence:
c(n)=c(n-1)+c(n-2)-c(n-3)+1.
Except for initial terms, the first seven rows are A028387, A002378, A005563, A028552, A008865, A014209, A028873, and the first column, A004652.

Examples

			Corner:
1....5...11...19
2....6...12...20
3....8...15...24
4...10...18...28
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the odd-numbered columns and then swap rows 1 and 2, leaving
3....11...23...39
4....12...24...40
6....16...30...48
10...22...38...58
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
		

Crossrefs

Formula

Let S(n,k) denote the k-th term in the n-th row. Four cases:
S(1,k)=k^2+k-1
S(2,k)=k^2+k
if n>1 is odd, then S(n,k)=k^2+(n-1)k+(n-1)(n-3)/4
if n>2 is even, then S(n,k)= k^2+(n-1)k+n(n-4)/4.

A083022 Numbers n such that 4*n^2 - 3 is prime.

Original entry on oeis.org

2, 4, 5, 7, 10, 13, 16, 17, 20, 22, 23, 29, 32, 34, 40, 43, 44, 46, 49, 55, 56, 59, 62, 64, 68, 70, 71, 73, 82, 86, 95, 97, 101, 103, 104, 109, 110, 125, 127, 133, 134, 148, 149, 152, 155, 160, 161, 163, 164, 166, 170, 175, 178, 181, 185, 208, 209, 218, 220
Offset: 1

Views

Author

Hugo Pfoertner, May 31 2003

Keywords

Crossrefs

Cf. A028874.

Programs

Formula

a(n) = A028873(n)/2.

A296507 Numbers m such that m^2 - 13 is a prime.

Original entry on oeis.org

4, 6, 12, 18, 24, 30, 36, 54, 72, 84, 90, 96, 102, 114, 120, 138, 168, 186, 198, 204, 210, 216, 228, 240, 276, 294, 318, 330, 354, 360, 372, 378, 402, 414, 438, 444, 456, 480, 498, 504, 588, 600, 612, 618, 630, 636, 666, 678, 690, 714, 720, 726, 732, 738, 762
Offset: 1

Views

Author

Zak Seidov, Dec 13 2017

Keywords

Comments

All terms except 4 are divisible by 6. - Robert Israel, Dec 13 2017

Crossrefs

Programs

  • Maple
    select(n -> isprime(n^2-13), 2*[$2..10^4]); # Robert Israel, Dec 13 2017
  • Mathematica
    Reap[m=4;Do[If[PrimeQ[m^2-13],Sow[m]];m=m+2,{1000}]][[2,1]]
    Select[Range[800],PrimeQ[#^2-13]&] (* Harvey P. Dale, Mar 06 2023 *)
  • PARI
    isok(n) = isprime(n^2-13); \\ Michel Marcus, Dec 14 2017

A114335 Numbers k such that k^2 + 1 and k^2 - 3 are both prime.

Original entry on oeis.org

4, 10, 14, 20, 26, 40, 110, 124, 146, 206, 250, 326, 340, 350, 436, 440, 470, 634, 686, 704, 920, 1004, 1054, 1060, 1124, 1156, 1246, 1276, 1294, 1316, 1376, 1420, 1550, 1570, 1654, 1664, 1784, 1966, 1970, 2026, 2116, 2210, 2380, 2516, 2594, 2654, 2780
Offset: 1

Views

Author

John L. Drost, Feb 07 2006

Keywords

Comments

This is the intersection of A028873 and A005574; this sequence is also a subset of A090120 (n such that closest primes above and below n^2 differ by 4).

Examples

			a(2) = 10 since 10^2 + 1 = 101 and 10^2 - 3 = 97 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..100000] |IsPrime(n^2+1) and IsPrime(n^2-3)]; // Vincenzo Librandi, Nov 13 2010
    
  • Mathematica
    Select[Range[3,3000],AllTrue[#^2+{1,-3},PrimeQ]&] (* Harvey P. Dale, Jul 25 2024 *)
  • PARI
    isok(k) = isprime(k^2 + 1) && isprime(k^2 - 3); \\ Amiram Eldar, Mar 01 2025

A153262 Squares such that square+-3=primes.

Original entry on oeis.org

16, 64, 100, 196, 4096, 8464, 12544, 19600, 21316, 29584, 47524, 88804, 92416, 103684, 106276, 115600, 122500, 126736, 173056, 193600, 220900, 258064, 306916, 313600, 336400, 391876, 401956, 425104, 446224, 470596, 481636, 495616, 529984
Offset: 1

Views

Author

Keywords

Comments

16-3=13,16+3=19,primes; 64-3=61,64+3=67,primes;...
The squared members of the intersection of A028873 and A049422. [From R. J. Mathar, Jan 03 2009]

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n^2;If[PrimeQ[p-3]&&PrimeQ[p+3],AppendTo[lst,p]],{n,7!}];lst
    Select[Range[750]^2,And@@PrimeQ[#+{3,-3}]&] (* Harvey P. Dale, Dec 19 2012 *)
Showing 1-10 of 15 results. Next