A028896 6 times triangular numbers: a(n) = 3*n*(n+1).
0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, 630, 720, 816, 918, 1026, 1140, 1260, 1386, 1518, 1656, 1800, 1950, 2106, 2268, 2436, 2610, 2790, 2976, 3168, 3366, 3570, 3780, 3996, 4218, 4446, 4680, 4920, 5166, 5418, 5676
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Leo Tavares, Illustration: Centroid Hexagons.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000217, A000567, A003215, A008588, A024966, A028895, A033996, A046092, A049598, A084939, A084940, A084941, A084942, A084943, A084944, A124080.
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A045943 (4-cycles), A152773 (6-cycles).
Cf. A007531.
The partial sums give A007531. - Leo Tavares, Jan 22 2022
Programs
-
GAP
List([0..44],n->3*n*(n+1)); # Muniru A Asiru, Mar 15 2019
-
Magma
[3*n*(n+1): n in [0..50]]; // Wesley Ivan Hurt, Jun 09 2014
-
Maple
[seq(6*binomial(n,2),n=1..44)]; # Zerinvary Lajos, Nov 24 2006
-
Mathematica
6 Accumulate[Range[0, 50]] (* Harvey P. Dale, Mar 05 2012 *) 6 PolygonalNumber[Range[0, 20]] (* Eric W. Weisstein, Jul 27 2017 *) LinearRecurrence[{3, -3, 1}, {0, 6, 18}, 20] (* Eric W. Weisstein, Jul 27 2017 *)
-
PARI
a(n)=3*n*(n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
PARI
first(n) = Vec(6*x/(1 - x)^3 + O(x^n), -n) \\ Iain Fox, Feb 14 2018
-
Python
def A028896(n): return 3*n*(n+1) # Chai Wah Wu, Aug 07 2025
Formula
O.g.f.: 6*x/(1 - x)^3.
E.g.f.: 3*x*(x + 2)*exp(x). - G. C. Greubel, Aug 19 2017
a(n) = 6*A000217(n).
a(n) = polygorial(3, n+1). - Daniel Dockery (peritus(AT)gmail.com), Jun 16 2003
From Zerinvary Lajos, Mar 06 2007: (Start)
a(n) = A049598(n)/2.
a(n) = a(n-1) + 6*n for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = A003215(n) - 1. - Omar E. Pol, Oct 03 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=6, a(2)=18.
a(n) = A174709(6*n + 5). (End)
a(n) = A049450(n) + 4*n. - Lear Young, Apr 24 2014
a(n) = Sum_{i = n..2*n} 2*i. - Bruno Berselli, Feb 14 2018
a(n) = A320047(1, n, 1). - Kolosov Petro, Oct 04 2018
a(n) = T(3*n) - T(2*n-2) + T(n-2), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 04 2020
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - 1/3. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(3/Pi)*cos(sqrt(7/3)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (3/Pi)*cosh(Pi/(2*sqrt(3))). (End)
Comments