A029549 a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.
0, 6, 210, 7140, 242556, 8239770, 279909630, 9508687656, 323015470680, 10973017315470, 372759573255306, 12662852473364940, 430164224521152660, 14612920781245825506, 496409142337836914550, 16863297918705209269200, 572855720093639278238256
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..100
- H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
- Shyam Sunder Gupta Fascinating Triangular Numbers
- Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2021.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (Lucas(2,-1, 4*n+2)[2] -6)/32 ); # G. C. Greubel, Jan 13 2020
-
Haskell
a029549 n = a029549_list !! n a029549_list = [0,6,210] ++ zipWith (+) a029549_list (map (* 35) $ tail delta) where delta = zipWith (-) (tail a029549_list) a029549_list -- Reinhard Zumkeller, Sep 19 2011
-
Macsyma
(makelist(binom(n,2),n,1,999999),intersection(%%,2*%%)) /* Bill Gosper, Feb 07 2010 */
-
Magma
R
:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!(6/(1-35*x+35*x^2-x^3))); // G. C. Greubel, Jul 15 2018 -
Maple
A029549 := proc(n) option remember; if n <= 1 then op(n+1,[0,6]) ; else 34*procname(n-1)-procname(n-2)+6 ; end if; end proc: # R. J. Mathar, Feb 05 2016
-
Mathematica
Table[Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Original program from author, corrected by Ray Chandler, Jul 09 2015 *) CoefficientList[Series[6/(1 - 35x + 35x^2 - x^3), {x, 0, 14}], x] Intersection[#, 2#] &@ Table[Binomial[n, 2], {n, 999999}] (* Bill Gosper, Feb 07 2010 *) LinearRecurrence[{35, -35, 1}, {0, 6, 210}, 20] (* Harvey P. Dale, Jun 06 2011 *) (LucasL[4Range[20] - 2, 2] -6)/32 (* G. C. Greubel, Jan 13 2020 *)
-
PARI
concat(0,Vec(6/(1-35*x+35*x^2-x^3)+O(x^25))) \\ Charles R Greathouse IV, Jun 13 2013
-
Sage
[(lucas_number2(4*n+2, 2, -1) -6)/32 for n in (0..20)] # G. C. Greubel, Jan 13 2020
-
Scala
val triNums = (0 to 39999).map(n => (n * n + n)/2) triNums.filter( % 2 == 0).filter(n => (triNums.contains(n/2))) // _Alonso del Arte, Jan 12 2020
Formula
G.f.: 6*x/(1 - 35*x + 35*x^2 - x^3) = 6*x /( (1-x)*(1 - 34*x + x^2) ).
a(n) = -3/16 + ((3+2*sqrt(2))/32) *(17 + 12*sqrt(2))^n + ((3-2*sqrt(2))/32) *(17 - 12*sqrt(2))^n. - Gene Ward Smith, Sep 30 2006
From Bill Gosper, Feb 07 2010: (Start)
a(n) = (cosh((4*n + 2)*log(1 + sqrt(2))) - 3)/16.
a(n) = binomial(A046090(n), 2) = A000217(A001652(n)). - Mitch Harris, Apr 19 2007, R. J. Mathar, Jun 26 2009
a(n) = ceiling((3 + 2*sqrt(2))^(2n + 1) - 6)/32 = floor((1/32) (1+sqrt(2))^(4n+2)). - Ant King, Dec 13 2010
a(n) = a(n - 1) + A001109(2n). - Charlie Marion, Feb 10 2011
a(n+2) = 34*a(n + 1) - a(n) + 6. - Charlie Marion, Feb 11 2011
From George F. Johnson, Aug 20 2012: (Start)
a(n) = ((3 + 2*sqrt(2))^(2*n + 1) + (3 - 2*sqrt(2))^(2*n + 1) - 6)/32.
8*a(n) + 1 = (A002315(n))^2, 4*a(n) + 1 = (A000129(2*n + 1))^2, 32*a(n)^2 + 12*a(n) + 1 are perfect squares.
a(n + 1) = 17*a(n) + 3 + 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1) = 17*a(n) + 3 - 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1)*a(n + 1) = a(n)*(a(n) - 6), a(n) = A096979(2*n).
Limit_{n->infinity} a(n)/a(n - 1) = 17 + 12*sqrt(2).
Limit_{n->infinity} a(n)/a(n - 2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).
Limit_{n->infinity} a(n)/a(n - r) = (17 + 12*sqrt(2))^r.
Limit_{n->infinity} a(n - r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r. (End)
a(n) = 3 * T( b(n) ) + (2*b(n) + 1)*sqrt( T( b(n) ) ) where b(n) = A001108(n) (indices of the square triangular numbers), T(n) = A000217(n) (the n-th triangular number). - Dimitri Papadopoulos, Jul 07 2017
a(n) = (Pell(2*n + 1)^2 - 1)/4 = (Q(4*n + 2) - 6)/32, where Q(n) are the Pell-Lucas numbers (A002203). - G. C. Greubel, Jan 13 2020
Extensions
Additional comments from Christian G. Bower, Sep 19 2002; T. D. Noe, Nov 07 2006; and others
Edited by N. J. A. Sloane, Apr 18 2007, following suggestions from Andrew S. Plewe and Tanya Khovanova
Comments