A006257
Josephus problem: a(2*n) = 2*a(n)-1, a(2*n+1) = 2*a(n)+1.
Original entry on oeis.org
0, 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29
Offset: 0
From _Omar E. Pol_, Jun 09 2009: (Start)
Written as an irregular triangle the sequence begins:
0;
1;
1,3;
1,3,5,7;
1,3,5,7,9,11,13,15;
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31;
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,
43,45,47,49,51,53,55,57,59,61,63;
...
(End)
From _Omar E. Pol_, Nov 03 2018: (Start)
An illustration of initial terms, where a(n) is the area (or number of cells) in the n-th region of the structure:
n a(n) Diagram
0 0 _
1 1 |_|_ _
2 1 |_| |
3 3 |_ _|_ _ _ _
4 1 |_| | | |
5 3 |_ _| | |
6 5 |_ _ _| |
7 7 |_ _ _ _|
(End)
- Erhard Behrends, Der mathematische Zauberstab, Rowolth Taschenbuch Verlag, rororo 62902, 4. Auflage, 2019, pp. 156-164. [English version: The Math Behind the Magic, AMS, 2019.]
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 10.
- M. S. Petković, "Josephus problem", Famous Puzzles of Great Mathematicians, page 179, Amer. Math. Soc. (AMS), 2009.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paul Weisenhorn, Josephus und seine Folgen, MNU, 59(2006), pp. 18-19.
- Iain Fox, Table of n, a(n) for n = 0..100000 (terms 0..1000 from T. D. Noe, terms 1001..10000 from Indranil Ghosh).
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197, ex. 34.
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
- Daniel Erman and Brady Haran, The Josephus Problem, Numberphile video (2016)
- Chris Groër, The Mathematics of Survival: From Antiquity to the Playground, Amer. Math. Monthly, 110 (No. 9, 2003), 812-825.
- Alasdair MacFhraing, Aireamh Muinntir Fhinn Is Dhubhain, Agus Sgeul Josephuis Is An Da Fhichead Iudhaich, [Gaelic with English summary], Proc. Royal Irish Acad., Vol. LII, Sect. A., No. 7, 1948, 87-93.
- Yuri Nikolayevsky and Ioannis Tsartsaflis, Cohomology of N-graded Lie algebras of maximal class over Z_2, arXiv:1512.87676 [math.RA], (2016), pages 2, 6.
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
- Eric Weisstein's World of Mathematics, Josephus Problem
- Wikipedia, Josephus problem
- Index entries for sequences related to the Josephus Problem
Second column, and main diagonal, of triangle
A032434.
-
Require Import ZArith.
Fixpoint a (n : positive) : Z :=
match n with
| xH => 1
| xI n' => (2*(a n') + 1)%Z
| xO n' => (2*(a n') - 1)%Z
end.
(* Stefan Haan, Aug 27 2023 *)
-
a006257 n = a006257_list !! n
a006257_list =
0 : 1 : (map (+ 1) $ zipWith mod (map (+ 1) $ tail a006257_list) [2..])
-- Reinhard Zumkeller, Oct 06 2011
-
[0] cat [2*(n-2^Floor(Log(2,n)))+1: n in [1..100]]; // Vincenzo Librandi, Jan 14 2016
-
a(0):=0: for n from 1 to 100 do a(n):=(a(n-1)+1) mod n +1: end do:
seq(a(i),i=0..100); # Paul Weisenhorn, Oct 10 2010; corrected by Robert Israel, Jan 13 2016
A006257 := proc(n)
convert(n,base,2) ;
ListTools[Rotate](%,-1) ;
add( op(i,%)*2^(i-1),i=1..nops(%)) ;
end proc: # R. J. Mathar, May 20 2016
A006257 := n -> 2*n - Bits:-Iff(n, n):
seq(A006257(n), n=0..78); # Peter Luschny, Sep 24 2019
-
Table[ FromDigits[ RotateLeft[ IntegerDigits[n, 2]], 2], {n, 0, 80}] (* Robert G. Wilson v, Sep 21 2003 *)
Flatten@Table[Range[1, 2^n - 1, 2], {n, 0, 5}] (* Birkas Gyorgy, Feb 07 2011 *)
m = 5; Range[2^m - 1] + 1 - Flatten@Table[Reverse@Range[2^n], {n, 0, m - 1}] (* Birkas Gyorgy, Feb 07 2011 *)
-
a(n)=sum(k=1,n,if(bitxor(n,k)Paul D. Hanna
-
a(n)=if(n, 2*n-2^logint(2*n,2)+1, 0) \\ Charles R Greathouse IV, Oct 29 2016
-
import math
def A006257(n):
return 0 if n==0 else 2*(n-2**int(math.log(n,2)))+1 # Indranil Ghosh, Jan 11 2017
-
def A006257(n): return bool(n&(m:=1<Chai Wah Wu, Jan 22 2023
(C#)
static long cs_A006257(this long n) => n == 0 ? 0 : 1 + (1 + (n - 1).cs_A006257()) % n; // Frank Hollstein, Feb 24 2021
A321298
Triangle read by rows: T(n,k) is the number of the k-th eliminated person in the Josephus elimination process for n people and a count of 2, 1 <= k <= n.
Original entry on oeis.org
1, 2, 1, 2, 1, 3, 2, 4, 3, 1, 2, 4, 1, 5, 3, 2, 4, 6, 3, 1, 5, 2, 4, 6, 1, 5, 3, 7, 2, 4, 6, 8, 3, 7, 5, 1, 2, 4, 6, 8, 1, 5, 9, 7, 3, 2, 4, 6, 8, 10, 3, 7, 1, 9, 5, 2, 4, 6, 8, 10, 1, 5, 9, 3, 11, 7, 2, 4, 6, 8, 10, 12, 3, 7, 11, 5, 1, 9, 2, 4, 6, 8, 10, 12, 1, 5, 9, 13, 7, 3, 11, 2, 4, 6, 8, 10, 12, 14
Offset: 1
Triangle begins:
1;
2, 1;
2, 1, 3;
2, 4, 3, 1;
2, 4, 1, 5, 3;
2, 4, 6, 3, 1, 5;
2, 4, 6, 1, 5, 3, 7;
2, 4, 6, 8, 3, 7, 5, 1;
2, 4, 6, 8, 1, 5, 9, 7, 3;
2, 4, 6, 8, 10, 3, 7, 1, 9, 5;
2, 4, 6, 8, 10, 1, 5, 9, 3, 11, 7;
2, 4, 6, 8, 10, 12, 3, 7, 11, 5, 1, 9;
2, 4, 6, 8, 10, 12, 1, 5, 9, 13, 7, 3, 11;
...
For n = 5, to get the entries in 5th row from left to right, start with (^1, 2, 3, 4, 5) and the pointer at position 1, indicated by the caret. 1 is skipped and 2 is eliminated to get (1, ^3, 4, 5). (The pointer moves ahead to the next "live" number.) On the next turn, 3 is skipped and 4 is eliminated to get (1, 3, ^5). Then 1, 5, and 3 are eliminated in that order (going through (^3, 5) and (^3)). This gives row 5 of the triangle and entries a(11) through a(15) in this sequence.
The right border of this triangle is
A006257.
-
Table[Rest@ Nest[Append[#1, {Delete[#2, #3 + 1], #2[[#3 + 1]], #3}] & @@ {#, #[[-1, 1]], Mod[#[[-1, -1]] + 1, Length@ #[[-1, 1]]]} &, {{Range@ n, 0, 0}}, n][[All, 2]], {n, 14}] // Flatten (* Michael De Vlieger, Nov 13 2018 *)
-
def A321298(n,k):
if 2*k<=n: return 2*k
n2,r=divmod(n,2)
if r==0: return 2*A321298(n2,k-n2)-1
if k==n2+1: return 1
return 2*A321298(n2,k-n2-1)+1 # Pontus von Brömssen, Sep 18 2022
A054995
A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer two places clockwise from i. Repeat, counting two places from the next undeleted integer, until only one integer remains.
Original entry on oeis.org
1, 2, 2, 1, 4, 1, 4, 7, 1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 17, 20, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 1, 4, 7, 10, 13, 16, 19, 22, 25
Offset: 1
a(5) = 4 because the elimination process gives (1^,2,3,4,5) -> (1,2,4^,5) -> (2^,4,5) -> (2^,4) -> (4), where ^ denotes the counting reference position.
a(13) = 13 => a(14) = (a(13) + 2) mod 14 + 1 = 2. - _Paul Weisenhorn_, Oct 10 2010
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
- R. Baumann, Das Josephus-Problem, LOG IN, Heft Nr. 165, pp. 70-71, 2010 (in German).
- Ph. Dumas, Algebraic aspects of B-regular series. [Broken link]
- Philippe Dumas, Algebraic aspects of B-regular series, Research Report, RR-1931, INRIA, 1993.
- Ph. Dumas, Algebraic aspects of B-regular series, in: International Colloquium on Automata, Languages and Programming, ICALP 1993 (A. Lingas, R. Karlsson, S. Carlsson, eds.), pp. 457-468, Lecture Notes in Computer Science, vol. 700, Springer, Berlin, 1993.
- L. Halbeisen and N. Hungerbühler, The Josephus Problem, J. Théor. Nombres Bordeaux 9 (1997), no. 2, 303-318.
- Alasdair MacFhraing, Aireamh Muinntir Fhinn Is Dhubhain, Agus Sgeul Josephuis Is An Da Fhichead Iudhaich, [Gaelic with English summary], Proc. Royal Irish Acad., Vol. LII, Sect. A., No. 7, 1948, 87-93.
- A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991.
- Index entries for sequences related to the Josephus Problem
-
(* First do *) Needs["Combinatorica`"] (* then *) f[n_] := Last@ InversePermutation@ Josephus[n, 3]; Array[f, 70] (* Robert G. Wilson v, Jul 31 2010 *)
Table[Nest[Rest@RotateLeft[#, 2] &, Range[n], n - 1], {n, 72}] // Flatten (* Arkadiusz Wesolowski, Jan 14 2013 *)
A007495
Josephus problem: survivors.
Original entry on oeis.org
1, 1, 2, 2, 2, 4, 5, 4, 8, 8, 7, 11, 8, 13, 4, 11, 12, 8, 12, 2, 13, 7, 22, 2, 8, 13, 26, 4, 26, 29, 17, 27, 26, 7, 33, 20, 16, 22, 29, 4, 13, 22, 25, 14, 22, 37, 18, 46, 42, 46, 9, 41, 12, 7, 26, 42, 24, 5, 44, 53, 52, 58, 29, 22, 12, 48, 27, 30, 58, 52, 49, 57, 13, 14, 32, 24, 75, 8, 67
Offset: 1
From _Gerhard Kirchner_, Oct 23 2016: (Start)
If n = 4 we have that:
t(1,4) = 0.
t(2,4) = (0+4) mod 2 = 0.
t(3,4) = (0+4) mod 3 = 1.
t(4,4) = (1+4) mod 4 = 1.
So a(4) = 1 + 1 = 2. (End)
- Friend H. Kierstead, Jr., Computer Challenge Corner, J. Rec. Math., 10 (1977), see p. 124.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* First do *) Needs["Combinatorica`"] (* then *) f[n_] := Last@ InversePermutation@ Josephus[n, n]; Array[f, 80] (* Robert G. Wilson v, Jul 31 2010 *)
t[k_, n_] := t[k, n] = Mod[t[k-1, n]+n, k]; t[1, ] = 0; a[n] := t[n, n]+1; Array[a, 1000] (* Jean-François Alcover, Oct 23 2016, after Gerhard Kirchner *)
A088333
A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer 3 places clockwise from i. Repeat, counting 3 places from the next undeleted integer, until only one integer remains.
Original entry on oeis.org
1, 1, 2, 2, 1, 5, 2, 6, 1, 5, 9, 1, 5, 9, 13, 1, 5, 9, 13, 17, 21, 3, 7, 11, 15, 19, 23, 27, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42
Offset: 1
- See A054995 for references and links.
A198789
Array T(n,k) read by antidiagonals: Last survivor positions in Josephus problem for n numbers and a count of k, n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 2, 1, 5, 1, 2, 2, 1, 3, 6, 1, 1, 1, 2, 4, 5, 7, 1, 2, 1, 2, 1, 1, 7, 8, 1, 1, 3, 3, 2, 5, 4, 1, 9, 1, 2, 3, 2, 4, 1, 2, 7, 3, 10, 1, 1, 2, 3, 4, 4, 6, 6, 1, 5, 11, 1, 2, 2, 3, 1, 5, 3, 3, 1, 4, 7, 12, 1, 1, 1, 4, 2, 3, 5, 1, 8, 5, 7, 9, 13
Offset: 1
.n\k 1 2 3 4 5 6 7 8 9 10
----------------------------------
.1 | 1 1 1 1 1 1 1 1 1 1
.2 | 2 1 2 1 2 1 2 1 2 1
.3 | 3 3 2 2 1 1 3 3 2 2
.4 | 4 1 1 2 2 3 2 3 3 4
.5 | 5 3 4 1 2 4 4 1 2 4
.6 | 6 5 1 5 1 4 5 3 5 2
.7 | 7 7 4 2 6 3 5 4 7 5
.8 | 8 1 7 6 3 1 4 4 8 7
.9 | 9 3 1 1 8 7 2 3 8 8
10 | 10 5 4 5 3 3 9 1 7 8
-
T[n_, k_] := T[n, k] = If[n == 1, 1, Mod[T[n-1, k]+k-1, n]+1];
Table[T[n-k+1, k], {n, 1, 13}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2023 *)
A321781
Least q > 1 letting Josephus survive if he finds himself at position j in the circle of m persons, but is allowed to name the elimination parameter q such that every q-th person is executed, written as triangle T(m,j), m > 1, j <= m.
Original entry on oeis.org
0, 2, 3, 5, 3, 2, 2, 4, 6, 10, 4, 5, 2, 3, 11, 3, 10, 8, 6, 2, 27, 11, 4, 6, 3, 7, 5, 2, 2, 19, 5, 7, 12, 4, 3, 9, 3, 7, 2, 42, 35, 11, 6, 5, 21, 8, 19, 5, 3, 2, 15, 9, 10, 7, 12, 16, 26, 24, 40, 7, 36, 2, 5, 4, 14, 12, 4, 9, 6, 26, 8, 11, 18, 13, 2, 3, 12, 7, 21, 10, 15, 11, 4, 5, 23, 13, 6, 12, 2, 18, 3
Offset: 1
The triangle begins:
0
2 3
5 3 2
2 4 6 10
4 5 2 3 11
3 10 8 6 2 27
11 4 6 3 7 5 2
2 19 5 7 12 4 3 9
3 7 2 42 35 11 6 5 21
8 19 5 3 2 15 9 10 7 12
16 26 24 40 7 36 2 5 4 14 12
4 9 6 26 8 11 18 13 2 3 12 7
...
3 persons:
q = 2: 111 -> 101 -> 001. Position 3 survives, therefore T(3,3) = 2;
q = 3: 111 -> 110 -> 010. Position 2 survives, therefore T(3,2) = 3;
q = 4: 111 -> 011 -> 010. Position 2 survives, already covered by q = 3;
q = 5: 111 -> 101 -> 100. Position 1 survives, therefore T(3,1) = 5.
- Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994, page 20.
The first column of the table is
A187788.
A128982
If in a line of n persons every n-th person is eliminated until only one person is left, which position P should one assume in the original lineup to avoid being eliminated?
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 6, 2, 6, 6, 10, 2, 12, 2, 6, 8, 16, 2, 18, 2, 16, 18, 22, 2, 22, 12, 16, 8, 28, 2, 30, 2, 28, 18, 22, 12, 36, 2, 6, 8, 40, 2, 42, 2, 30, 42, 46, 2, 42, 14, 40, 30, 52, 2, 36, 24, 52, 54, 58, 2, 60, 2, 6, 30, 48, 24, 66, 2, 30, 18, 70, 2, 72, 2, 6, 20, 60, 18, 78, 2, 72, 78
Offset: 1
Elimination at n=6: 1,2,3,4,5,6 -> 1,2,3,4,5 -> 2,3,4,5 -> 2,4,5 -> 2,4 -> 2. After the 3 is eliminated, counting does not start at 4 but again at 2.
-
int a(int n) { if (n<3) return 1; int L=1, R=n-1, M, t, s, q, r; while (R>L+1) { s = M = (L+R)/2; t= n-1; while (s && sHagen von Eitzen, Nov 08 2022 */
-
A128982 := proc(n) local l ; l := [seq(i,i=1..n)] ; for i from 1 to n-1 do rm := ((n-1) mod nops(l))+1 ; l := subsop(rm=NULL,l) ; od ; RETURN(op(1,l)) ; end: for n from 1 to 85 do printf("%d, ",A128982(n)) ; od ; # R. J. Mathar, May 07 2007
-
a[n_] := Module[{l = Range[n]}, Do[l = Delete[l, Mod[n-1, Length[l]]+1], {n-1}]; If[l == {}, Nothing, l[[1]]]];
a /@ Range[0, 100] (* Jean-François Alcover, Apr 01 2020 *)
This is a version of the Josephus problem. Several other versions are already in the OEIS. -
N. J. A. Sloane, May 01 2007
A198788
Array T(k,n) read by descending antidiagonals: Last survivor positions in Josephus problem for n numbers and a count of k, n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 3, 2, 1, 5, 1, 2, 1, 1, 6, 3, 1, 2, 2, 1, 7, 5, 4, 2, 1, 1, 1, 8, 7, 1, 1, 2, 1, 2, 1, 9, 1, 4, 5, 2, 3, 3, 1, 1, 10, 3, 7, 2, 1, 4, 2, 3, 2, 1, 11, 5, 1, 6, 6, 4, 4, 3, 2, 1, 1, 12, 7, 4, 1, 3, 3, 5, 1, 3, 2, 2, 1, 13, 9, 7, 5, 8, 1, 5, 3
Offset: 1
.k\n 1 2 3 4 5 6 7 8 9 10
----------------------------------
.1 | 1 2 3 4 5 6 7 8 9 10 A000027
.2 | 1 1 3 1 3 5 7 1 3 5 A006257
.3 | 1 2 2 1 4 1 4 7 1 4 A054995
.4 | 1 1 2 2 1 5 2 6 1 5 A088333
.5 | 1 2 1 2 2 1 6 3 8 3 A181281
.6 | 1 1 1 3 4 4 3 1 7 3
.7 | 1 2 3 2 4 5 5 4 2 9 A178853
.8 | 1 1 3 3 1 3 4 4 3 1 A109630
.9 | 1 2 2 3 2 5 7 8 8 7
10 | 1 1 2 4 4 2 5 7 8 8
A032435
Triangle of second-to-last man to survive in Josephus problem of n men in a circle with every k-th killed, with 1 <= k <= n and n >= 2.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 3, 2, 1, 2, 5, 1, 1, 5, 1, 4, 6, 3, 1, 2, 1, 3, 4, 7, 1, 4, 6, 3, 1, 3, 4, 8, 3, 1, 1, 2, 7, 1, 3, 7, 9, 5, 4, 5, 3, 3, 8, 1, 6, 4, 10, 7, 2, 9, 1, 9, 4, 1, 4, 3, 4, 11, 1, 5, 1, 1, 3, 11, 5, 1, 1, 3, 2, 12, 3, 8, 5, 6, 9, 5, 4, 10, 2, 1, 1, 7, 13, 5, 2, 9, 2, 1, 12, 7, 5
Offset: 2
Triangle T(n,k) (with rows n >= 2 and columns k = 2..n) begins
1, 1;
2, 1, 1;
3, 1, 1, 2;
4, 3, 2, 1, 2;
5, 1, 1, 5, 1, 4;
6, 3, 1, 2, 1, 3, 4;
7, 1, 4, 6, 3, 1, 3, 4;
8, 3, 1, 1, 2, 7, 1, 3, 7;
9, 5, 4, 5, 3, 3, 8, 1, 6, 4;
10, 7, 2, 9, 1, 9, 4, 1, 4, 3, 4;
11, 1, 5, 1, 1, 3, 11, 5, 1, 1, 3, 2;
...
- W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., New York: Dover, pp. 32-36, 1987.
- M. Kraitchik, "Josephus' Problem", Sec. 3.13 in Mathematical Recreations, New York: W. W. Norton, pp. 93-94, 1942.
- Eric W. Weisstein, The CRC Concise Encyclopedia in Mathematics, 2nd ed., Chapman and Hall/CRC, 2002. [The first 8 rows of the triangle appear on p. 1595 of this book under the topic "Josephus Problem".]
- W. W. R. Ball, Mathematical Recreations and Essays, 4th ed., New York: The MacMillan Company, 1905 (see "Decimation" on pp. 19-20).
- Sean A. Irvine, A032435 and A032436 Josephus problem data mismatch, message in seqfan, June 2020.
- F. Jakóbczyk, On the generalized Josephus problem, Glasow Math. J. 14(2) (1973), 168-173. [It contains algorithms that allow the identification of the original position of the second-to-last person to survive in Josephus problem.]
- M. Kraitchik, "Josephus' Problem", Sec. 3.13 in Mathematical Recreations, New York: W. W. Norton, pp. 93-94, 1942. [Available only in the USA through the Hathi Trust Digital Library.]
- Eric Weisstein's World of Mathematics, Josephus Problem. [It contains a new, apparently corrected, triangle.]
- Wikipedia, Josephus problem.
- Index entries for sequences related to the Josephus Problem
Showing 1-10 of 13 results.
Comments