A165735
Surviving integers under the double-count Josephus problem (see A054995), modulo 3.
Original entry on oeis.org
1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
If we use n = 10, then we put numbers 1,2,3,4,5,6,7,8,9,10 in a circle. We eliminate 3,6,9,2,7,1,8,5,10, and the last number that remains is 4. Therefore J3(10) = 4 and J3(10) = 1 mod 3.
- Hiroshi Matsui, Masakazu Naito and Naoyuki Totani, The Period and the Distribution of the Fibonacci-like Sequence Under Various Moduli, Undergraduate Math Journal, Rose-Hulman Institute of Technology, Vol. 10, Issue 1, 2009.
- Masakazu Naito and Ryohei Miyadera, The Self-Similarity of the Josephus Problem and its Variants, Visual Mathematics, Volume 11, No.2, 2009.
- Wolfram MathWorld, Josephus Problem
- Index entries for sequences related to the Josephus Problem
-
J3[1] = 1; J3[2] = 2; J3[n_] := J3[n] = Block[{m, t}, t = Mod[n, 3]; m = (n - t)/3; Which[t == 0, J3[2 m] + Floor[(J3[2 m] - 1)/2], t == 1, If[J3[2 m + 1] == 1, 3 m + 1, J3[2 m + 1] + Floor[J3[2 m + 1]/2] - 2], t == 2, J3[2 m + 1] + Floor[J3[2 m + 1]/2] + 1]]; Table[Mod[J3[n], 3], {n, 1, 200}]
A006257
Josephus problem: a(2*n) = 2*a(n)-1, a(2*n+1) = 2*a(n)+1.
Original entry on oeis.org
0, 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29
Offset: 0
From _Omar E. Pol_, Jun 09 2009: (Start)
Written as an irregular triangle the sequence begins:
0;
1;
1,3;
1,3,5,7;
1,3,5,7,9,11,13,15;
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31;
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,
43,45,47,49,51,53,55,57,59,61,63;
...
(End)
From _Omar E. Pol_, Nov 03 2018: (Start)
An illustration of initial terms, where a(n) is the area (or number of cells) in the n-th region of the structure:
n a(n) Diagram
0 0 _
1 1 |_|_ _
2 1 |_| |
3 3 |_ _|_ _ _ _
4 1 |_| | | |
5 3 |_ _| | |
6 5 |_ _ _| |
7 7 |_ _ _ _|
(End)
- Erhard Behrends, Der mathematische Zauberstab, Rowolth Taschenbuch Verlag, rororo 62902, 4. Auflage, 2019, pp. 156-164. [English version: The Math Behind the Magic, AMS, 2019.]
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 10.
- M. S. Petković, "Josephus problem", Famous Puzzles of Great Mathematicians, page 179, Amer. Math. Soc. (AMS), 2009.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paul Weisenhorn, Josephus und seine Folgen, MNU, 59(2006), pp. 18-19.
- Iain Fox, Table of n, a(n) for n = 0..100000 (terms 0..1000 from T. D. Noe, terms 1001..10000 from Indranil Ghosh).
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197, ex. 34.
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
- Daniel Erman and Brady Haran, The Josephus Problem, Numberphile video (2016)
- Chris Groër, The Mathematics of Survival: From Antiquity to the Playground, Amer. Math. Monthly, 110 (No. 9, 2003), 812-825.
- Alasdair MacFhraing, Aireamh Muinntir Fhinn Is Dhubhain, Agus Sgeul Josephuis Is An Da Fhichead Iudhaich, [Gaelic with English summary], Proc. Royal Irish Acad., Vol. LII, Sect. A., No. 7, 1948, 87-93.
- Yuri Nikolayevsky and Ioannis Tsartsaflis, Cohomology of N-graded Lie algebras of maximal class over Z_2, arXiv:1512.87676 [math.RA], (2016), pages 2, 6.
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
- Eric Weisstein's World of Mathematics, Josephus Problem
- Wikipedia, Josephus problem
- Index entries for sequences related to the Josephus Problem
Second column, and main diagonal, of triangle
A032434.
-
Require Import ZArith.
Fixpoint a (n : positive) : Z :=
match n with
| xH => 1
| xI n' => (2*(a n') + 1)%Z
| xO n' => (2*(a n') - 1)%Z
end.
(* Stefan Haan, Aug 27 2023 *)
-
a006257 n = a006257_list !! n
a006257_list =
0 : 1 : (map (+ 1) $ zipWith mod (map (+ 1) $ tail a006257_list) [2..])
-- Reinhard Zumkeller, Oct 06 2011
-
[0] cat [2*(n-2^Floor(Log(2,n)))+1: n in [1..100]]; // Vincenzo Librandi, Jan 14 2016
-
a(0):=0: for n from 1 to 100 do a(n):=(a(n-1)+1) mod n +1: end do:
seq(a(i),i=0..100); # Paul Weisenhorn, Oct 10 2010; corrected by Robert Israel, Jan 13 2016
A006257 := proc(n)
convert(n,base,2) ;
ListTools[Rotate](%,-1) ;
add( op(i,%)*2^(i-1),i=1..nops(%)) ;
end proc: # R. J. Mathar, May 20 2016
A006257 := n -> 2*n - Bits:-Iff(n, n):
seq(A006257(n), n=0..78); # Peter Luschny, Sep 24 2019
-
Table[ FromDigits[ RotateLeft[ IntegerDigits[n, 2]], 2], {n, 0, 80}] (* Robert G. Wilson v, Sep 21 2003 *)
Flatten@Table[Range[1, 2^n - 1, 2], {n, 0, 5}] (* Birkas Gyorgy, Feb 07 2011 *)
m = 5; Range[2^m - 1] + 1 - Flatten@Table[Reverse@Range[2^n], {n, 0, m - 1}] (* Birkas Gyorgy, Feb 07 2011 *)
-
a(n)=sum(k=1,n,if(bitxor(n,k)Paul D. Hanna
-
a(n)=if(n, 2*n-2^logint(2*n,2)+1, 0) \\ Charles R Greathouse IV, Oct 29 2016
-
import math
def A006257(n):
return 0 if n==0 else 2*(n-2**int(math.log(n,2)))+1 # Indranil Ghosh, Jan 11 2017
-
def A006257(n): return bool(n&(m:=1<Chai Wah Wu, Jan 22 2023
(C#)
static long cs_A006257(this long n) => n == 0 ? 0 : 1 + (1 + (n - 1).cs_A006257()) % n; // Frank Hollstein, Feb 24 2021
A321298
Triangle read by rows: T(n,k) is the number of the k-th eliminated person in the Josephus elimination process for n people and a count of 2, 1 <= k <= n.
Original entry on oeis.org
1, 2, 1, 2, 1, 3, 2, 4, 3, 1, 2, 4, 1, 5, 3, 2, 4, 6, 3, 1, 5, 2, 4, 6, 1, 5, 3, 7, 2, 4, 6, 8, 3, 7, 5, 1, 2, 4, 6, 8, 1, 5, 9, 7, 3, 2, 4, 6, 8, 10, 3, 7, 1, 9, 5, 2, 4, 6, 8, 10, 1, 5, 9, 3, 11, 7, 2, 4, 6, 8, 10, 12, 3, 7, 11, 5, 1, 9, 2, 4, 6, 8, 10, 12, 1, 5, 9, 13, 7, 3, 11, 2, 4, 6, 8, 10, 12, 14
Offset: 1
Triangle begins:
1;
2, 1;
2, 1, 3;
2, 4, 3, 1;
2, 4, 1, 5, 3;
2, 4, 6, 3, 1, 5;
2, 4, 6, 1, 5, 3, 7;
2, 4, 6, 8, 3, 7, 5, 1;
2, 4, 6, 8, 1, 5, 9, 7, 3;
2, 4, 6, 8, 10, 3, 7, 1, 9, 5;
2, 4, 6, 8, 10, 1, 5, 9, 3, 11, 7;
2, 4, 6, 8, 10, 12, 3, 7, 11, 5, 1, 9;
2, 4, 6, 8, 10, 12, 1, 5, 9, 13, 7, 3, 11;
...
For n = 5, to get the entries in 5th row from left to right, start with (^1, 2, 3, 4, 5) and the pointer at position 1, indicated by the caret. 1 is skipped and 2 is eliminated to get (1, ^3, 4, 5). (The pointer moves ahead to the next "live" number.) On the next turn, 3 is skipped and 4 is eliminated to get (1, 3, ^5). Then 1, 5, and 3 are eliminated in that order (going through (^3, 5) and (^3)). This gives row 5 of the triangle and entries a(11) through a(15) in this sequence.
The right border of this triangle is
A006257.
-
Table[Rest@ Nest[Append[#1, {Delete[#2, #3 + 1], #2[[#3 + 1]], #3}] & @@ {#, #[[-1, 1]], Mod[#[[-1, -1]] + 1, Length@ #[[-1, 1]]]} &, {{Range@ n, 0, 0}}, n][[All, 2]], {n, 14}] // Flatten (* Michael De Vlieger, Nov 13 2018 *)
-
def A321298(n,k):
if 2*k<=n: return 2*k
n2,r=divmod(n,2)
if r==0: return 2*A321298(n2,k-n2)-1
if k==n2+1: return 1
return 2*A321298(n2,k-n2-1)+1 # Pontus von Brömssen, Sep 18 2022
A032434
Triangle read by rows: last survivors of Josephus elimination process.
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 1, 1, 2, 5, 3, 4, 1, 2, 6, 5, 1, 5, 1, 4, 7, 7, 4, 2, 6, 3, 5, 8, 1, 7, 6, 3, 1, 4, 4, 9, 3, 1, 1, 8, 7, 2, 3, 8, 10, 5, 4, 5, 3, 3, 9, 1, 7, 8, 11, 7, 7, 9, 8, 9, 5, 9, 5, 7, 7, 12, 9, 10, 1, 1, 3, 12, 5, 2, 5, 6, 11, 13, 11, 13, 5, 6, 9, 6, 13, 11, 2, 4, 10, 8, 14, 13, 2, 9
Offset: 1
Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins
1;
2, 1;
3, 3, 2;
4, 1, 1, 2;
5, 3, 4, 1, 2;
6, 5, 1, 5, 1, 4;
7, 7, 4, 2, 6, 3, 5;
...
Fast recurrence for n = 7 and k = 3:
m = 1 2 3 4 5 6,
z(m) = 1 2 3 4 6 9,
r(m) = 1 2 2 1 1,
z(6) > n => M = 5.
Result: T(7,3) = r(5) + 3*(n - z(5)) = 4.
- W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed. New York: Dover, 1987, see pp. 32-36.
- M. Kraitchik, "Josephus' Problem." Sec. 3.13 in Mathematical Recreations. New York: W. W. Norton, pp. 93-94, 1942.
- T. D. Noe, Rows n = 1..50, flattened
- Philippe Dumas, Algebraic aspects of B-regular series, inria-00074743, 1993.
- Philippe Dumas, Algebraic aspects of B-regular series, in: A. Lingas, R. Karlsson, S. Carlsson S. (eds), Automata, Languages and Programming, ICALP 1993 (Lecture Notes in Computer Science, vol 700, Springer, Berlin, Heidelberg), pp. 457-468, 1993.
- L. Halbeisen and N. Hungerbühler, The Josephus Problem, preprint, 1997.
- L. Halbeisen and N. Hungerbühler, The Josephus Problem, preprint, 1997.
- L. Halbeisen and N. Hungerbühler, The Josephus Problem, Journal de Théorie des Nombres de Bordeaux 9 (1997), 303-318.
- Gerhard Kirchner, Fast recurrence.
- A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, preprint, 1991. [Cached copy, with permission]
- A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33 (1991), 235-240.
- Eric Weisstein's World of Mathematics, Josephus Problem.
- Wikipedia, Josephus problem.
- Index entries for sequences related to the Josephus problem
-
t[1, k_] = 1; t[n_, k_] := t[n, k] = If[m = Mod[t[n-1, k] + k, n]; m != 0, m, n]; Flatten[ Table[ t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, Sep 25 2012 *)
-
T(n,k)=local(t): if(n<2,n>0,t=(T(n-1,k)+k)%n: if(t,t,n))
A083286
Decimal expansion of K(3), a constant related to the Josephus problem.
Original entry on oeis.org
1, 6, 2, 2, 2, 7, 0, 5, 0, 2, 8, 8, 4, 7, 6, 7, 3, 1, 5, 9, 5, 6, 9, 5, 0, 9, 8, 2, 8, 9, 9, 3, 2, 4, 1, 1, 3, 0, 6, 6, 1, 0, 5, 5, 6, 2, 3, 1, 3, 0, 3, 7, 4, 3, 2, 1, 8, 5, 4, 4, 3, 3, 8, 7, 3, 7, 8, 4, 3, 3, 9, 9, 9, 7, 2, 7, 4, 8, 4, 4, 7, 6, 3, 8, 3, 6, 1, 6, 5, 3, 9, 8, 3, 3, 2, 3, 3, 4, 1, 1, 0, 0
Offset: 1
1.62227050288476731595695...
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.13 and 2.30.1, pp. 131, 196.
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33 (1991), 235-240.
- A.H.M. Smeets, 100000 decimal digits.
- E. T. H. Wang, Phillip C. Washburn, Problem E2604, American Mathematical Monthly, 84 (1977), 821-822.
- Eric Weisstein's World of Mathematics, Power Ceilings.
- Index entries for sequences related to the Josephus Problem.
-
s[x_, 0] := 0; s[x_, n_] := Floor[x*s[x, n - 1]] + 1
c[x_, n_] := ((1/x)^n) s[x, n]
t = N[c[3/2, 800], 120]
RealDigits[t, 10] (* A083286 *)
(* Display of the surroundings of 3/2 *)
Plot[N[c[x, 20]], {x, 1, 3}]
(* Clark Kimberling, Oct 24 2012 *)
-
p=1; N=10^4; for(n=1, N, p=ceil(3/2*p)); c=(p/(3/2)^N)+0.
-
d, a, n, nmax = 3, 0, 0, 150000
while n < nmax:
n, a = n+1, (a*d)//(d-1)+1
nom, den, pos = a*(d-1)**n, d**n, 0
while pos < 20000:
dig, nom, pos = nom//den, (nom%den)*10, pos+1
print(pos,dig) # A.H.M. Smeets, Jul 05 2019
A007495
Josephus problem: survivors.
Original entry on oeis.org
1, 1, 2, 2, 2, 4, 5, 4, 8, 8, 7, 11, 8, 13, 4, 11, 12, 8, 12, 2, 13, 7, 22, 2, 8, 13, 26, 4, 26, 29, 17, 27, 26, 7, 33, 20, 16, 22, 29, 4, 13, 22, 25, 14, 22, 37, 18, 46, 42, 46, 9, 41, 12, 7, 26, 42, 24, 5, 44, 53, 52, 58, 29, 22, 12, 48, 27, 30, 58, 52, 49, 57, 13, 14, 32, 24, 75, 8, 67
Offset: 1
From _Gerhard Kirchner_, Oct 23 2016: (Start)
If n = 4 we have that:
t(1,4) = 0.
t(2,4) = (0+4) mod 2 = 0.
t(3,4) = (0+4) mod 3 = 1.
t(4,4) = (1+4) mod 4 = 1.
So a(4) = 1 + 1 = 2. (End)
- Friend H. Kierstead, Jr., Computer Challenge Corner, J. Rec. Math., 10 (1977), see p. 124.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* First do *) Needs["Combinatorica`"] (* then *) f[n_] := Last@ InversePermutation@ Josephus[n, n]; Array[f, 80] (* Robert G. Wilson v, Jul 31 2010 *)
t[k_, n_] := t[k, n] = Mod[t[k-1, n]+n, k]; t[1, ] = 0; a[n] := t[n, n]+1; Array[a, 1000] (* Jean-François Alcover, Oct 23 2016, after Gerhard Kirchner *)
A088333
A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer 3 places clockwise from i. Repeat, counting 3 places from the next undeleted integer, until only one integer remains.
Original entry on oeis.org
1, 1, 2, 2, 1, 5, 2, 6, 1, 5, 9, 1, 5, 9, 13, 1, 5, 9, 13, 17, 21, 3, 7, 11, 15, 19, 23, 27, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42
Offset: 1
- See A054995 for references and links.
A081614
Subsequence of A005428 with state = 1.
Original entry on oeis.org
1, 4, 6, 9, 31, 70, 105, 355, 799, 1798, 2697, 9103, 20482, 30723, 69127, 155536, 233304, 349956, 524934, 787401, 2657479, 5979328, 8968992, 13453488, 20180232, 30270348, 45405522, 68108283, 153243637, 1745540806, 2618311209, 8836800331, 19882800745, 67104452515, 150985018159, 339716290858, 509574436287, 1146542481646, 1719813722469, 13059835455001, 44076944660629, 753095921662471, 1694465823740560
Offset: 0
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968. [See Table 18, p. 374.]
-
/* In the program below, we use a truncated version of either A005428 or A073941 and choose those terms that correspond to "state" or "number of last survivor" equal to 1. See A073941 or Schuh (1968) for more details. */
first(n) = {my(res = vector(n), t = 1, wn = wo = 4, go = gn = 1); res[1] = 1; for(i = 1, oo, c = wo % 2; if(go == 1, t++; res[t] = wo; if(t >= n, return(res) ) ); wn = floor(wo*3/2) + c * (2 - go); gn = 3 * c + go * (-1)^c; wo = wn; go = gn; ) } \\ David A. Corneth and Petros Hadjicostas, Jul 20 2020
A181281
A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer 4 places clockwise from i. Repeat, counting 4 places from the next undeleted integer, until only one integer remains.
Original entry on oeis.org
1, 2, 1, 2, 2, 1, 6, 3, 8, 3, 8, 1, 6, 11, 1, 6, 11, 16, 2, 7, 12, 17, 22, 3, 8, 13, 18, 23, 28, 3, 8, 13, 18, 23, 28, 33, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 3, 8, 13, 18, 23, 28, 33, 38
Offset: 1
a(7) = 6: (^1,2,3,4,5,6,7) -> (1,2,3,4,^6,7) -> (1,2,^4,6,7) -> (1,^4,6,7) -> (1,^6,7) -> (^1,6) -> (^6).
a(14) = 11 => a(15) = (a(14)+4) mod 15 + 1 = 1.
- Paul Weisenhorn, Josephus und seine Folgen, MNU Journal (Der mathematische und naturwissenschaftliche Unterricht), 59 (2006), 18-19.
-
a:= proc(n) option remember;
`if` (n=1, 1, (a(n-1)+4) mod n +1)
end:
seq (a(n), n=1..100);
-
a[1] = 1; a[n_] := a[n] = Mod[a[n-1]+4, n]+1; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 18 2013 *)
A198789
Array T(n,k) read by antidiagonals: Last survivor positions in Josephus problem for n numbers and a count of k, n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 2, 1, 5, 1, 2, 2, 1, 3, 6, 1, 1, 1, 2, 4, 5, 7, 1, 2, 1, 2, 1, 1, 7, 8, 1, 1, 3, 3, 2, 5, 4, 1, 9, 1, 2, 3, 2, 4, 1, 2, 7, 3, 10, 1, 1, 2, 3, 4, 4, 6, 6, 1, 5, 11, 1, 2, 2, 3, 1, 5, 3, 3, 1, 4, 7, 12, 1, 1, 1, 4, 2, 3, 5, 1, 8, 5, 7, 9, 13
Offset: 1
.n\k 1 2 3 4 5 6 7 8 9 10
----------------------------------
.1 | 1 1 1 1 1 1 1 1 1 1
.2 | 2 1 2 1 2 1 2 1 2 1
.3 | 3 3 2 2 1 1 3 3 2 2
.4 | 4 1 1 2 2 3 2 3 3 4
.5 | 5 3 4 1 2 4 4 1 2 4
.6 | 6 5 1 5 1 4 5 3 5 2
.7 | 7 7 4 2 6 3 5 4 7 5
.8 | 8 1 7 6 3 1 4 4 8 7
.9 | 9 3 1 1 8 7 2 3 8 8
10 | 10 5 4 5 3 3 9 1 7 8
-
T[n_, k_] := T[n, k] = If[n == 1, 1, Mod[T[n-1, k]+k-1, n]+1];
Table[T[n-k+1, k], {n, 1, 13}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2023 *)
Showing 1-10 of 23 results.
Comments