Original entry on oeis.org
1, 2, 5, 4, 10, 22, 8, 20, 44, 99, 16, 40, 88, 198, 471, 32, 80, 176, 396, 942, 2386, 64, 160, 352, 792, 1884, 4772, 12867, 128, 324, 704, 1584, 3768, 9544, 25734, 73681
Offset: 0
First few rows of the triangle =
1;
2, 5;
4, 10, 22;
8, 20, 44, 99;
16, 40, 88, 198, 471;
32, 80, 176, 396, 942, 2386;
64, 160, 352, 792, 1884, 4772, 12867;
128, 324, 704, 1584, 3768, 9544, 25734, 73681;
...
A123158
Square array related to Bell numbers read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 5, 1, 52, 52, 37, 22, 6, 1, 203, 203, 151, 99, 31, 9, 1, 877, 877, 674, 471, 160, 61, 10, 1, 4140, 4140, 3263, 2386, 856, 385, 75, 14, 1, 21147, 21147, 17007, 12867, 4802, 2416, 520, 135, 15, 1
Offset: 0
Square array, A(n, k), begins:
1, 1, 1, 1, 1, ... (Row n=0: A000012);
1, 2, 3, 5, 6, ... (Row n=1: A117142);
2, 5, 10, 22, 31, ...;
5, 15, 37, 99, 160, ...;
15, 52, 151, 471, 856, ...;
52, 203, 674, 2386, 4802, ...;
Antidiagonals, T(n, k), begin as:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
15, 15, 10, 5, 1;
52, 52, 37, 22, 6, 1;
203, 203, 151, 99, 31, 9, 1;
877, 877, 674, 471, 160, 61, 10, 1;
-
function A(n,k)
if k lt 0 or n lt 0 then return 0;
elif n eq 0 then return 1;
elif (k mod 2) eq 1 then return A(n,k-1) + (1/2)*(k+1)*A(n-1,k+1);
else return A(n,k-1) + A(n-1,k+1);
end if;
end function;
T:= func< n,k | A(n-k,k) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
-
A[0, _?NonNegative] = 1;
A[n_, k_]:= A[n, k]= If[n<0 || k<0, 0, If[OddQ[k], A[n, k-1] + (1/2)(k+1) A[n-1, k+1], A[n, k-1] + A[n-1, k+1]]];
Table[A[n-k, k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Feb 21 2020 *)
-
@CachedFunction
def A(n,k):
if (k<0 or n<0): return 0
elif (n==0): return 1
elif (k%2==1): return A(n,k-1) +(1/2)*(k+1)*A(n-1,k+1)
else: return A(n,k-1) +A(n-1,k+1)
def T(n,k): return A(n-k,k)
flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jul 18 2023
A126350
Triangle read by rows: matrix product of the binomial coefficients with the Stirling numbers of the second kind.
Original entry on oeis.org
1, 1, 2, 1, 5, 5, 1, 9, 22, 15, 1, 14, 61, 99, 52, 1, 20, 135, 385, 471, 203, 1, 27, 260, 1140, 2416, 2386, 877, 1, 35, 455, 2835, 9156, 15470, 12867, 4140, 1, 44, 742, 6230, 28441, 72590, 102215, 73681, 21147
Offset: 1
Matrix begins:
1 2 5 15 52 203 877 4140 21147
0 1 5 22 99 471 2386 12867 73681
0 0 1 9 61 385 2416 15470 102215
0 0 0 1 14 135 1140 9156 72590
0 0 0 0 1 20 260 2835 28441
0 0 0 0 0 1 27 455 6230
0 0 0 0 0 0 1 35 742
0 0 0 0 0 0 0 1 44
0 0 0 0 0 0 0 0 1
-
T:= (n, k)-> add(Stirling2(n, j)*binomial(j-1, n-k), j=n-k+1..n):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 03 2019
-
T[dim_] := T[dim] = Module[{M}, M[n_, n_] = 1; M[, ] = 0; Do[M[n, k] = M[n-1, k-1] + (k+2) M[n-1, k] + (k+1) M[n-1, k+1], {n, 0, dim-1}, {k, 0, n-1}]; Array[M, {dim, dim}, {0, 0}]];
dim = 9;
Table[T[dim][[n]][[1 ;; n]] // Reverse, {n, 1, dim}] (* Jean-François Alcover, Jun 27 2019, from Sage *)
-
def A126350_triangle(dim): # rows in reversed order
M = matrix(ZZ,dim,dim)
for n in (0..dim-1): M[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n,k] = M[n-1,k-1]+(k+2)*M[n-1,k]+(k+1)*M[n-1,k+1]
return M
A126350_triangle(9) # Peter Luschny, Sep 19 2012
A108458
Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the last block is the singleton {k}, 1<=k<=n; the blocks are ordered with increasing least elements.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 3, 5, 0, 1, 5, 10, 15, 0, 1, 9, 22, 37, 52, 0, 1, 17, 52, 99, 151, 203, 0, 1, 33, 130, 283, 471, 674, 877, 0, 1, 65, 340, 855, 1561, 2386, 3263, 4140, 0, 1, 129, 922, 2707, 5451, 8930, 12867, 17007, 21147, 0, 1, 257, 2572, 8919, 19921, 35098, 53411, 73681, 94828, 115975
Offset: 1
Triangle T(n,k) starts:
1;
0,1;
0,1,2;
0,1,3,5;
0,1,5,10,15;
T(5,3)=5 because we have 1245|3, 145|2|3, 14|25|3, 15|24|3 and 1|245|3.
The arrays U(n,k) starts:
1 0 0 0 0 ...
1 1 1 1 1 ...
2 3 5 9 17 ...
5 10 22 52 130 ...
15 37 99 283 855 ...
Row sums of T(n, k) yield
A124496(n, 1).
-
T[n_, k_] := Sum[If[n == k, 1, i^(n-k)]*StirlingS2[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2024, after Vladeta Jovovic *)
A078468
Distinct compositions of the complete graph with one edge removed (K^-_n).
Original entry on oeis.org
1, 4, 13, 47, 188, 825, 3937, 20270, 111835, 657423, 4097622, 26965867, 186685725, 1355314108, 10289242825, 81481911259, 671596664012, 5749877335253, 51042081429213, 469037073951694, 4454991580211951, 43677136038927595, 441452153556357966, 4594438326374915007
Offset: 0
a(5) = A000110(7)-A000110(5) = 825.
A282179
E.g.f.: exp(exp(x) - 1)*(exp(3*x) - 2*exp(x) + 1).
Original entry on oeis.org
0, 1, 9, 52, 283, 1561, 8930, 53411, 334785, 2199034, 15119621, 108644581, 814474176, 6358910949, 51615342685, 434865155292, 3796991928727, 34308796490005, 320379418256794, 3087939032182127, 30683582797977749, 313977721545709002, 3305220440084030809, 35759627532783842561
Offset: 0
E.g.f.: A(x) = x/1! + 9*x^2/2! + 52*x^3/3! + 283*x^4/4! + 1561*x^5/5! + 8930*x^6/6! + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..572
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Eric Weisstein's MathWorld, Stirling Transform
-
b:= proc(n, m) option remember; `if`(n=0,
m^3, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..27); # Alois P. Heinz, Jul 15 2022
-
Range[0, 23]! CoefficientList[Series[Exp[Exp[x] - 1] (Exp[3 x] - 2 Exp[x] + 1), {x, 0, 23}], x]
Table[Sum[StirlingS2[n, k] k^3, {k, 0, n}], {n, 0, 23}]
Table[Sum[Binomial[n, k] BellB[n-k] (3^k - 2), {k, 1, n}], {n, 0, 23}]
Table[BellB[n+3] - 3*BellB[n+2] + BellB[n], {n, 0, 23}] (* Vaclav Kotesovec, Aug 06 2021 *)
A344054
a(n) = Sum_{k = 0..n} E1(n, k)*k^2, where E1 are the Eulerian numbers A173018.
Original entry on oeis.org
0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, 3792255667200, 65819609856000, 1206547550208000, 23297526540288000, 472708591939584000, 10055994967130112000, 223826984752250880000, 5202760944485744640000, 126075414965721661440000, 3179798058882852126720000, 83346901966165164687360000, 2267221868000212451328000000
Offset: 0
-
a := n -> add(combinat[eulerian1](n, k)*k^2, k = 0..n):
# Recurrence:
a := proc(n) option remember; if n < 2 then 0 elif n = 2 then 1 else
((n-3)*(n-1)*(23*n-44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) fi end:
seq(a(n), n = 0..29);
-
a[n_] := Sum[Sum[(-1)^j Binomial[n + 1, j] k^2 (k + 1 - j)^n, {j,0,k}], {k,0,n}]; a[0] := 0; Table[a[n], {n, 0, 25}]
-
def aList(len):
R. = PowerSeriesRing(QQ, default_prec=len+2)
f = x^2*(-x^2 + x - 3)/(6*(x - 1)^3)
return f.egf_to_ogf().list()[:len]
print(aList(20))
A372803
Expansion of e.g.f. exp(1 - exp(-x)) * (exp(-x) - 1) * (exp(-x) - 2).
Original entry on oeis.org
0, 1, 3, -2, -11, 31, 14, -349, 1047, 820, -21265, 90355, -26352, -2086083, 14092615, -32449650, -241320287, 3080629195, -15455723498, -2456654665, 760213889483, -7097893818852, 28459679925187, 125560349169887, -3153253543188992, 26852335900600041, -86130449768002245
Offset: 0
-
nmax = 26; CoefficientList[Series[Exp[1 - Exp[-x]] (Exp[-x] - 1) (Exp[-x] - 2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) StirlingS2[n, k] k^2, {k, 0, n}], {n, 0, 26}]
Showing 1-8 of 8 results.
Comments