A033638 Quarter-squares plus 1 (that is, a(n) = A002620(n) + 1).
1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82, 91, 101, 111, 122, 133, 145, 157, 170, 183, 197, 211, 226, 241, 257, 273, 290, 307, 325, 343, 362, 381, 401, 421, 442, 463, 485, 507, 530, 553, 577, 601, 626, 651, 677, 703, 730, 757, 785, 813, 842
Offset: 0
Examples
First 4 rows can be taken to be 1,2,5,10,17,...; 3,4,6,11,18,...; 7,8,9,12,19,...; 13,14,15,16,20,... Ulam square spiral = 7 8 9 / 6 1 2 / 5 4 3 /...; changes of direction (right-angle) at 1 2 3 5 7 ... From _Joerg Arndt_, May 10 2013: (Start) The a(7)=13 unimodal compositions of 7 with maximal part <= 2 are 01: [ 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 2 ] 03: [ 1 1 1 1 2 1 ] 04: [ 1 1 1 2 1 1 ] 05: [ 1 1 1 2 2 ] 06: [ 1 1 2 1 1 1 ] 07: [ 1 1 2 2 1 ] 08: [ 1 2 1 1 1 1 ] 09: [ 1 2 2 1 1 ] 10: [ 1 2 2 2 ] 11: [ 2 1 1 1 1 1 ] 12: [ 2 2 1 1 1 ] 13: [ 2 2 2 1 ] (End) G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 13*x^7 + 17*x^8 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Kassie Archer and Aaron Geary, Descents in powers of permutations, arXiv:2406.09369 [math.CO], 2024.
- Jonathan Bloom and Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
- H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
- E. S. Egge, Restricted 3412-Avoiding Involutions: Continued Fractions, Chebyshev Polynomials and Enumerations, Thm. 6.6, arXiv:math/0307050 [math.CO], 2003.
- D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021. See Proposition 2.3 p. 4.
- Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
- Brian Hopkins and Aram Tangboonduangjit, Water Cells in Compositions of 1s and 2s, arXiv:2412.11528 [math.CO], 2024. See p. 3.
- Nathan Jacobson, Schur's theorems on commutative matrices, Bull. Amer. Math. Soc. 50 (1944) 431-436.
- Gerold Jäger and Tuomo Lehtilä, The Generalized Double Pouring Problem: Analysis, Bounds and Algorithms, arXiv:2504.03039 [math.CO], 2025. See Definition 25(a), Lemma 26(a) and proof of Theorem 27. p. 9-12.
- M. Mirzakhani, A Simple Proof of a Theorem of Schur, The American Mathematical Monthly, Vol. 105, No. 3 (Mar 1998), pp. 260-262.
- D. Necas and I. Ohlidal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; DOI:10.1364/OE.22.004499. See Table 1.
- I. Schur, Neue Begründung der Theorie der Gruppencharaktere, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1905), 406-432.
- Harold N. Ward, A Normal Graph Algebra, arXiv:2201.00389 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Black Bishop Graph.
- Eric Weisstein's World of Mathematics, Lower Matching Number.
- Julie Zhang, Noah A. Rosenberg, and Julia A. Palacios, The space of multifurcating ranked tree shapes: enumeration, lattice structure, and Markov chains, arXiv:2506.10856 [math.PR], 2025. See p. 8.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Haskell
a033638 = (+ 1) . (`div` 4) . (^ 2) -- Reinhard Zumkeller, Apr 06 2012
-
Magma
[n^2 div 4 + 1: n in [0.. 50]]; // Vincenzo Librandi, Jul 31 2016
-
Maple
with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card
=3)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=6..62); # Zerinvary Lajos, Mar 09 2007 A033638 := proc(n) 1+floor(n^2/4) ; end proc: # R. J. Mathar, Jul 13 2012 -
Mathematica
a[n_] := a[n] = 2*a[n - 1] - 2*a[n - 3] + a[n - 4]; a[0] = a[1] = 1; a[2] = 2; a[3] = 3; Array[a, 54, 0] (* Robert G. Wilson v, Mar 28 2011 *) LinearRecurrence[{2, 0, -2, 1}, {1, 1, 2, 3}, 60] (* Robert G. Wilson v, Sep 16 2012 *)
-
PARI
{a(n) = n^2\4 + 1} /* Michael Somos, Apr 03 2007 */
-
Python
def A033638(n): return (n**2>>2)+1 # Chai Wah Wu, Jul 27 2022
Formula
a(n) = ceiling((n^2+3)/4) = ( (7 + (-1)^n)/2 + n^2 )/4.
a(n) = A001055(prime^n), number of factorizations. - Reinhard Zumkeller, Dec 29 2001
G.f.: (1-x+x^3)/((1-x)^2*(1-x^2)); a(n) = a(n-1) + a(n-2) - a(n-3) + 1. - Jon Perry, Jul 07 2004
a(n) = a(n-2) + n - 1. - Paul Barry, Jul 14 2004
a(0) = 1; a(1) = 1; for n > 1 a(n) = a(n-1) + round(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
a(n) = floor((n^2)/4) + 1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3. - Philippe Deléham, Nov 03 2008
a(0) = a(1) = 1, a(n) = a(n-1) + ceiling(sqrt(a(n-2))) for n > 1. - Jonathan Vos Post, Oct 08 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 1. - Richard R. Forberg, Jun 08 2013
a(n) = a(n-1) + floor(n/2). - Michel Lagneau, Jul 11 2014
From Ilya Gutkovskiy, Oct 07 2016: (Start)
E.g.f.: (exp(-x) + (7 + 2*x + 2*x^2)*exp(x))/8.
a(n) = Sum_{k=0..n} A123108(k).
a(n) = (n^2 - n + 4)/2 - a(n-1) for n >= 1. - Kritsada Moomuang, Aug 03 2019
Comments